Sunday, July 3, 2022
No Result
View All Result
Medical Finance
  • Home
  • News
  • Interviews
  • Mediknowledge
  • Insights From Industry
  • Thought Leaders
  • Coronavirus
  • Whitepapers
  • Home
  • News
  • Interviews
  • Mediknowledge
  • Insights From Industry
  • Thought Leaders
  • Coronavirus
  • Whitepapers
No Result
View All Result
Medical Finance
No Result
View All Result
Home News

UH researcher receives $2 million to develop drugs for traditionally undruggable targets in cancer

by Medical Finance
in News
9
SHARES
99
VIEWS
Share on FacebookShare on Twitter

With a $2 million recruitment grant from the Cancer Prevention and Research Institute of Texas (CPRIT), a University of Houston researcher is setting up a lab to develop drugs that will work on traditionally undruggable targets in cancer. Gül Zerze, assistant professor in the William A. Brookshire Department of Chemical and Biomolecular Engineering at the UH Cullen College of Engineering, is one of 12 cancer researchers recruited to Texas by CPRIT last November.

Zerze’s initial target is breast cancer.

“One out of nearly six Texas women diagnosed with breast cancer will die of the disease. Importantly, Texan women of color are disproportionately impacted by the high mortality rate compared to white Texan women (41% higher mortality rate reported for Black Texan women in 2016). This high mortality rate, despite the substantial efforts made for early diagnosis, calls for better therapeutics urgently,” said Zerze, whose research will also be expanded more broadly to address other cancers.

The CPRIT recruitment grants for the latest class, totaling $38 million, are meant to “form a critical ecosystem of distinguished cancer-fighting talent” in Texas. Zerze was persuaded to come to UH from Princeton University where she was a postdoctoral researcher specializing in computational modeling and simulations of a special class of proteins called intrinsically disordered proteins (IDPs).

The vast majority (approximately 70%) of proteins implicated in human cancers are either IDPs or have large intrinsically disordered regions, and many of these targets are considered ‘undruggable’ due to the scarcity of high-resolution methods that can offer a fundamental understanding of them.

“Computational and data science methodologies offer a promising avenue to fill in this gap to enable developing drugs against these traditionally undruggable targets,” said Zerze, whose methodology will include rapid screening.

Despite the significant progress made in cancer treatment options in the last 20 years, many cancer targets have still yet to be drugged. Among those holding promise are transcription factors (TFs), which are proteins involved in converting (or transcribing) DNA into RNA. TFs contain large amounts of disordered proteins which participate in transcriptional condensates that form via liquid-like phase separation (LLPS).

“Transcriptional condensates are shown to be aberrant in tumor cells, but the progress to develop drugs against TFs that participate in LLPS has been limited by the extremely dynamic nature of activation domains of TFs. We are developing a computational platform that will enable discovering drugs against these aberrant condensates by systematically interrogating the way transcription factors form, through the liquid-like phase separation of intrinsically disordered regions,” said Zerze.

Through collaborations within the University and the MD Anderson Cancer Center, the drug candidates will be rapidly tested.

“The ideas proposed here will save lives and the products that will come out of this project have a great potential for commercialization and founding companies to contribute to the Texas economy,” said Zerze.

Total
0
Shares
Share 0
Tweet 0
Pin it 0
Share 0
Medical Finance

Medical Finance

Related Posts

Scientists discover a division of labor between genetic switches

New, safer CRISPR approach may help correct genetic defects in the future

by Medical Finance
July 3, 2022
0

Curing debilitating genetic diseases is one of the great challenges of modern medicine. During the past decade, development of CRISPR...

Scientists shed light on placenta’s role in transferring vitamin D to fetus during pregnancy

Scientists use transcriptomics to explore the ancient origins of placenta

by Medical Finance
July 3, 2022
0

The fossil record tells us about ancient life through the preserved remains of body parts like bones, teeth and turtle...

Slight pH adjustment may turn a metabolic inhibiting drug into promising COVID-19 treatment

Study shows the effects of “forever chemicals” on soil structure and function

by Medical Finance
July 3, 2022
0

Soils are impacted globally by several anthropogenic factors, including chemical pollutants. Among those, perfluoroalkyl and polyfluoroalkyl substances (PFAS) are of...

Horizontal gene transfer between viruses and hosts plays a major role in driving evolution

Chemical-based sequencing method to efficiently study DNA methylation

by Medical Finance
July 3, 2022
0

One way cells can control the activities of their genes is by adding small chemical modifications to the DNA that...

Study: Cell culture model system utilizing engineered A549 cells to express high levels of ACE2 and TMPRSS2 for investigating SARS-CoV-2 infection and antivirals. Image Credit: Microgen / Shutterstock.com

Lab engineered human A549 lung cell model conducive for investigating SARS-CoV-2 antivirals

by Medical Finance
July 3, 2022
0

In a study recently published on the bioRxiv* preprint server, researchers developed a human A549 lung epithelial cell-based model to...

Bacterial biofilms use a developmental patterning mechanism seen in plants and animals

Composition of poplar tree microbiome changes dramatically over time, study finds

by Medical Finance
July 3, 2022
0

The science Recent work shows that the plant microbiome-;the microorganisms in a plant and its immediate environment-;influences plant health, survival,...

Next Post
Scrapping many Covid testing measures is a grave mistake, says London Medical Laboratory

Cannabidiol found to inhibit SARS-CoV-2 infection in human cells and mice

Scientists discover antibody that inhibits a broad range of sarbecoviruses

Some states still pushing ineffective covid antibody treatments

0 0 votes
Article Rating
Subscribe
Login
Notify of
guest
guest
0 Comments
Inline Feedbacks
View all comments

Support

  • Contact
  • Disclaimer
  • Home
  • Privacy Policy
  • Terms And Conditions

Categories

  • Coronavirus
  • Insights From Industry
  • Interviews
  • Mediknowledge
  • News
  • Thought Leaders
  • Whitepapers

More News

  • Study: Microalgal drugs: A promising therapeutic reserve for the future. Image Credit: Bigone / Shutterstock
    Algal metabolites as novel drugs against viruses
  • Study: Effectiveness of BNT162b2 Vaccine against Critical Covid-19 in Adolescents. Image Credit: NIAID
    BNT162b2 COVID vaccine 94% effective against adolescent hospitalization
  • Home
  • Privacy Policy
  • Contact
  • Disclaimer
  • Terms And Conditions

© 2022 Medical Finance - Latest Financial and Business News

No Result
View All Result
  • Interviews
  • Mediknowledge
  • News
  • Insights From Industry
  • Coronavirus
  • Thought Leaders
  • Whitepapers
wpDiscuz
0
0
Would love your thoughts, please comment.x
()
x
| Reply