Sunday, August 14, 2022
No Result
View All Result
Medical Finance
  • Home
  • News
  • Interviews
  • Mediknowledge
  • Insights From Industry
  • Thought Leaders
  • Coronavirus
  • Whitepapers
  • Home
  • News
  • Interviews
  • Mediknowledge
  • Insights From Industry
  • Thought Leaders
  • Coronavirus
  • Whitepapers
No Result
View All Result
Medical Finance
No Result
View All Result
Home Coronavirus

Study indicates combining a hydrogen peroxide-based disinfectant with cellulosic copper nanoparticles lowers human coronaviruses’ infectivity

by Medical Finance
in Coronavirus
Study: Cellulosic copper nanoparticles and a hydrogen peroxide-based disinfectant protect Vero E6 cells against infection by viral pseudotyped particles expressing SARS-CoV-2, SARS-CoV or MERS-CoV Spike protein. Image Credit: Matthias Friel/Shutterstock
9
SHARES
99
VIEWS
Share on FacebookShare on Twitter

A recent study posted to the bioRxiv* preprint server indicated that combining a hydrogen peroxide (H2O2)-based disinfectant and cellulosic copper (Cu) nanoparticles lowered human coronaviruses’ (HuCoVs) infectivity.

Study: Cellulosic copper nanoparticles and a hydrogen peroxide-based disinfectant protect Vero E6 cells against infection by viral pseudotyped particles expressing SARS-CoV-2, SARS-CoV or MERS-CoV Spike protein. Image Credit: Matthias Friel/Shutterstock
Study: Cellulosic copper nanoparticles and a hydrogen peroxide-based disinfectant protect Vero E6 cells against infection by viral pseudotyped particles expressing SARS-CoV-2, SARS-CoV or MERS-CoV Spike protein. Image Credit: Matthias Friel/Shutterstock

Background

The viral respiratory infection, severe acute respiratory syndrome (SARS), is caused by HuCoVs such as the Middle East respiratory syndrome CoV (MERS-CoV), SARS-CoV, and SARS-CoV-2. Although their principal mechanism of transmission is via contaminated respiratory droplets from virus-infected carriers, the viral transmission may also be aided by the deposition of expelled virus particles on fomites and surfaces.

Prior reports demonstrated that the disinfection of high-touch non-porous surfaces lowers the chances of SARS-CoV-2 transmission through fomites. Viruses and bacteria are effectively inactivated by Cu alloys comprising at least 70% Cu and Cu-based surfaces.

The release of redox-active Cu ions from the Cu-based surfaces is responsible for their antimicrobial activities. The lipid bilayer membrane of viruses and bacteria is severely damaged by continuous Cu release. Increased inflow of Cu ions into the viral particle or cell due to the breakdown of membrane integrity promotes oxidative damage to nucleic acids, proteins, and lipids. Microbe-Cu interactions are essential for Cu-based surface-facilitated microbial killing, even though the pathways leading to microbial cell death differ depending on the kind of microorganism.

About the study

In the present study, the researchers analyzed spike (S)-facilitated HCoVs entry into the substrate cells using pseudo viral particles of replication-deficient murine leukemia virus (MLV) expressing MERS-CoV, SARS-CoV-2, and SARS-CoV S proteins on their surface.

Carboxymethyl cellulose (CMC) nanofibers coupled with copper (Cu) possess potent antimicrobial characteristics. The team employed the nanostructure of CMC as a physical template to stabilize and generate nanoparticles containing Cu. The researchers estimated these Cu-containing nanoparticles’ employability as an antimicrobial nanocomposite towards enveloped MLV-based pseudovirions harboring the three aforesaid HCoVs S proteins.

The cellulosic Cu nanoparticles’ effect on S protein-mediated entry of pseudovirion was estimated using a 15-minute or 30-second treatment of CMC-Cu on the MLV-based pseudovirions. In line with the American Society for Testing and Materials (ASTM) International standard (E-1052), a 30-second CMC-Cu treatment was performed, addressing the hand hygiene techniques against enveloped viruses like SARS-CoV-2. The second 15-minute CMC-Cu treatment was used to see if the virucidal impact was comparable to the 30-second treatment.

To compare the potency of CMC-Cu in inactivating S-expressing pseudovirions, the researchers utilized SaberTM, an H2O2-based disinfectant, at dilutions of 1:100 and 1:250. SaberTM contains sodium dodecylbenzenesulfonate, an anionic surfactant, additional to H2O2 to boost its virucidal activity. Further, the antimicrobial activity of CMC-Cu coupled with SaberTM was also estimated in the study.

Results and discussions

The results indicated that a 30-second treatment of CMC-Cu substantially inactivated the MERS-CoV-, SARS-CoV-2-, and SARS-CoV-S pseudotyped particles. The luciferase activity of S-pseudovirions was reduced from 86% to 98% when treated with 1:100 dilution of CMC-Cu. Further, the infectivity of S-pseudovirions was virtually eliminated when treated with the 1:25 dilution of CMC-Cu. These data equate to a clear decrease in viral infectivity in the context of SARS-CoV-2-S pseudovirions, with a 1.6 log10, 2.4 log10, and 3.2 log10 drops at 1:100, 1:50, and 1:25 dilutions, respectively. 

Moreover, a 30-second CMC-Cu treatment was as efficacious as a 15-minute exposure for pseudoviral particle inactivation. According to the current findings, the benefit of employing CMC-Cu was that it offers a quick virucidal impact on S-pseudoviral particles, prompting inactivation after just 30-seconds.

MERS-CoV-, SARS-CoV-2-, and SARS-CoV-S were susceptible to 30-second exposure to SaberTM. Following treatment with 0.4% SaberTM, the infectivity of S-pseudoviral particles reduced from 99.4% to 98.7%. SARS-CoV-2-S pseudovirions treated with 0.4% and 1% SaberTM for 30-seconds demonstrated 2.2- and 2.5-log10 or more inactivation, respectively. These reductions in reporter activity indicate that the S-pseudoviral particles infectivity was abolished by treatment with 1% and 0.4% SaberTM for 30 seconds.

The S-pseudovirions were more susceptible to SaberTM-CMC-Cu cocktail than CMC-Cu or SaberTM alone. SaberTM-CMC-Cu treatment resulted in a 2.8-log10 drop in SARS-CoV-2 S-pseudotyped particles, which was a 100% decrease relative to background concentrations of infectivity reported with Δenv pseudoviral particles in Vero E6 cell experiments.

Further, a comparable Cu1+-dependent reactive oxygen species (ROS)-catalyzed nanoparticles-induced microbial death since the hydroxyl radical quencher Tiron and Cu1+ chelator tetrathiomolybdate (TTM) shielded S-pseudovirions from CMC-Cu action.

Conclusions

The study findings demonstrated that when S-pseudovirions were treated with CMC-Cu nanoparticles for 30 seconds, their capacity to infect target Vero E6 cells was dramatically reduced, resulting in nearly 97% lower infectivity than untreated pseudovirions. On the contrary, treatment with the Cu chelator TTM protected S-pseudovirions against CMC-Cu-facilitated deactivation.

The infectivity of S-pseudovirions was drastically decreased by around 98% when they were exposed to an H2O2-based disinfectant called SaberTM at 1:16 dilution. Nonetheless, in Vero E6 cell experiments, combining CMC-Cu and SaberTM was the most efficient way to limit infectivity of MERS-CoV, SARS-CoV-2, and SARS-CoV-S pseudovirions. 

The present study revealed that cellulosic Cu nanoparticles boost the efficiency of diluted SaberTM sanitizer, paving the way for a more effective method to reduce the likelihood of enveloped respiratory virus transmission through fomites and surfaces.

*Important notice

bioRxiv publishes preliminary scientific reports that are not peer-reviewed and, therefore, should not be regarded as conclusive, guide clinical practice/health-related behavior, or treated as established information.

Total
0
Shares
Share 0
Tweet 0
Pin it 0
Share 0
Medical Finance

Medical Finance

Related Posts

Study: Phylogenetic analysis of human parainfluenza type 3 virus strains responsible for the outbreak during the COVID-19 pandemic in Seoul, South Korea. Image Credit: Experienceplus / Shutterstock

Human parainfluenza type 3 virus outbreak in Seoul during SARS-CoV-2 pandemic

by Medical Finance
August 14, 2022
0

In a recent study posted to the bioRxiv* preprint server, researchers conducted a phylogenetic investigation of the human parainfluenza type 3...

Differential waning of RBD-binding IgG antibody levels based on vaccination and infection status. Naïve unvaccinated (n=418) and infected unvaccinated (n=306) show no change in antibody levels over time (p>0.05); naïve, vaccinated participants (n=515) and infected, vaccinated participants (n=303) both show significant waning over the time (****p<0.0001). The antibody level of the naïve unvaccinated group was always lower than the other groups (****p<0.0001); the infected vaccinated group was always higher than any other group (*p<0.05); naïve, vaccinated group is higher than infected, unvaccinated group for the first 4 months after vaccination (**p<0.0014). The rate of decay was only significantly different between the vaccinated and infected groups (****p<0.0001) but not between the two vaccinated (p=0.7762) and the two unvaccinated groups (p=0.9476). Number of months start with the time of reception of the primary vaccines series for the vaccinated groups, time of infection for the infected unvaccinated group, and the first available timepoint for the naïve unvaccinated group.

Waning antibody responses in SARS-CoV-2-infected or vaccinated population

by Medical Finance
August 14, 2022
0

A recent study posted to the bioRxiv* preprint server evaluated the effects of the waning of antibodies after coronavirus disease...

Study: Allosteric binders of ACE2 are promising anti-SARS-CoV-2 agents. Image Credit: Kateryna Kon/Shutterstock

Angiotensin-converting enzyme 2 allosteric binders found to be effective against SARS-CoV-2

by Medical Finance
August 14, 2022
0

In a recent study posted to the bioRxiv* pre-print server, researchers investigated allosteric binders of angiotensin-converting enzyme 2 (ACE2) that...

Study: Broad neutralization of SARS-CoV-2 variants by circular mRNA producing VFLIP-X spike in mice. Image Credit: Design_Cells / Shutterstock.com

A circRNA COVID vaccine with potential to neutralize SARS-CoV-2 variants

by Medical Finance
August 14, 2022
0

The coronavirus disease 2019 (COVID-19) messenger ribonucleic acid (mRNA) vaccines are marginally effective in neutralizing the severe acute respiratory syndrome...

Study: SARS-CoV-2 variants’-Alpha, Delta, and Omicron D614G and P681R/H mutations impact virus entry, fusion, and infectivity. Image Credit: FOTOGRIN / Shutterstock.com

Evaluating effects of D614G and P681R/H mutations on SARS-CoV-2 VOCs

by Medical Finance
August 14, 2022
0

In a recent study posted to the Research Square preprint* server, researchers evaluate how the D614G and P681H mutations alter the...

Study: SARS-CoV-2 infection during the Omicron surge among patients receiving dialysis: the role of circulating receptor-binding domain antibodies and vaccine doses. Image Credit: mailsonpignata / Shutterstock

SARS-CoV-2 infection risk among dialysis patients during Omicron surge

by Medical Finance
August 14, 2022
0

A recent study posted to the medRxiv* preprint server evaluated the antibody responses against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)...

Next Post
Study: CASCADE: Naked eye-detection of SARS-CoV-2 using Cas13a and gold nanoparticles. Image Credit: Kateryna Kon/Shutterstock

CASCADE biosensor found to be effective in naked-eye SARS-CoV-2 RNA detection

Study: Risks and burdens of incident diabetes in long COVID: a cohort study. Lancet Diabetes Endocrinology. Image Credit: Design_Cells/Shutterstock

Study investigates incident diabetes burden and risk in post-acute COVID-19 patients

0 0 votes
Article Rating
Subscribe
Login
Notify of
guest
guest
0 Comments
Inline Feedbacks
View all comments

Support

  • Contact
  • Disclaimer
  • Home
  • Privacy Policy
  • Terms And Conditions

Categories

  • Coronavirus
  • Insights From Industry
  • Interviews
  • Mediknowledge
  • News
  • Thought Leaders
  • Whitepapers

More News

  • 174318220 620x480
    UNIGE scientists develop a novel tool to visualize palmitoylation process in living cells
  • DNA Genetics 620x480
    Fast-breeding sea urchin species could open new avenues for genetic research
  • Home
  • Privacy Policy
  • Contact
  • Disclaimer
  • Terms And Conditions

© 2022 Medical Finance - Latest Financial and Business News

No Result
View All Result
  • Interviews
  • Mediknowledge
  • News
  • Insights From Industry
  • Coronavirus
  • Thought Leaders
  • Whitepapers
wpDiscuz
0
0
Would love your thoughts, please comment.x
()
x
| Reply