Tuesday, July 5, 2022
No Result
View All Result
Medical Finance
  • Home
  • News
  • Interviews
  • Mediknowledge
  • Insights From Industry
  • Thought Leaders
  • Coronavirus
  • Whitepapers
  • Home
  • News
  • Interviews
  • Mediknowledge
  • Insights From Industry
  • Thought Leaders
  • Coronavirus
  • Whitepapers
No Result
View All Result
Medical Finance
No Result
View All Result
Home News

Steady-state DNA motion allows cells to conduct housekeeping tasks under similar nuclear environments

by Medical Finance
in News
Researchers create a DNA-based fluorescent nanoantenna to monitor the motions of proteins
9
SHARES
100
VIEWS
Share on FacebookShare on Twitter

Researchers in Japan have discovered that the local DNA motion inside of human cells remains steady throughout interphase, where the cell grows and replicates its DNA for cell division. The study suggests that this steady-state DNA motion allows cells to conduct housekeeping tasks under similar environments during interphase.

The team, led by Professor Kazuhiro Maeshima of National Institute of Genetics, ROIS, published their findings June 3 in Science Advances.

To fit inside the nucleus of the cell, DNA is organized into chromatin, in which the strands of DNA are wrapped around groups of histone proteins, like thread around a spool, to form structures known as nucleosomes. Nucleosomes can then be folded up into even more compact structures and form chromatin. Previous research shows that chromatin is continuously swaying in living cells.

As the cell cycle progresses (namely G1, S, and G2 phases), where genome DNA doubles and the nucleus becomes larger, the nuclear environment surrounding chromatin drastically changes. Maeshima and colleagues at the National Institute of Genetics in Mishima, Japan, constructed this question: How does chromatin behavior change during interphase?

Maeshima’s group used a high-resolution light microscopy technique to look at the behavior of individual nucleosomes inside living cells for a very short time, approximately one second.

Maeshima and colleagues have revealed that the local chromatin motion remains steady throughout interphase, although genome DNA is doubled by DNA replication and the nucleus grows. The researchers also have shown that nuclear growth without replication did not affect the steady-state motion of chromatin. Thus, local chromatin motion is independent of such nuclear changes during interphase.

This is an important finding because the steady-state motion allows cells to conduct their routines, such as RNA transcription and DNA replication, under similar nuclear environments. Local chromatin motion can govern genomic DNA accessibility for target searching or recruiting a piece of machinery. The steady-state motion of chromatin provides a robust cellular system in which DNA functions are unaffected by various nuclear changes.”


Shiori Iida, first author

“Cells can transiently change the chromatin motion from the steady state to perform their ad hoc jobs in response to DNA damages, among many other tasks,” Maeshima said. He and his team aim to further explore how DNA motion is regulated, which proteins are involved in the regulation process, and more about how DNA behaves during cell division. “Our ultimate goal is to understand how human genomic DNA inside the cell behaves to read-out genetic information in it,” Maeshima said.

Source:

Research Organization of Information and Systems

Journal reference:

Iida, S., et al. (2022) Single-nucleosome imaging reveals steady-state motion of interphase chromatin in living human cells. Science Advances. doi.org/10.1126/sciadv.abn5626.

Total
0
Shares
Share 0
Tweet 0
Pin it 0
Share 0
Medical Finance

Medical Finance

Related Posts

Researchers investigate how messenger substances signal inflammation during damaged cell removal

GlyNAC supplementation can increase lifespan and improve multiple age-associated defects

by Medical Finance
July 5, 2022
0

Many people aspire to live longer, healthier lives. A researcher at Baylor College of Medicine, Dr. Rajagopal Sekhar, associate professor...

Study: Evidence of Co-Infection During Delta and Omicron Variants of Concern Co-Circulation, Weeks 49-2021 To 02-2022, France. Image Credit: Corona Borealis Studio / Shutterstock.com

Delta and Omicron coinfections identified in France

by Medical Finance
July 5, 2022
0

The Omicron variant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was reported as a variant of concern (VOC)...

New cryo-EM method may be able to shortcut a big step in modern vaccine development

Study may pave the way for better multiple sclerosis drugs

by Medical Finance
July 5, 2022
0

Investigators from Weill Cornell Medicine and Memorial Sloan Kettering Cancer Center have discovered how a drug for multiple sclerosis interacts...

PhoreMost and POLARISqb announce a multi-target collaboration to investigate next-generation cancer therapies

T-cell cytokine and fatty acid work together to trigger a type of cell death

by Medical Finance
July 5, 2022
0

Researchers at the University of Michigan Rogel Cancer Center found that a cytokine, a category of protein that acts as...

Scientists discover a division of labor between genetic switches

New DNA test can quickly and accurately identify a range of hard-to-diagnose genetic diseases

by Medical Finance
July 5, 2022
0

A new DNA test, developed by researchers at the Garvan Institute of Medical Research in Sydney and collaborators from Australia,...

KHN’s ‘What the Health?’: FDA takes center stage

Cell-hobbling fibrils found across diverse neurodegenerative diseases

by Medical Finance
July 5, 2022
0

Take a cell-deep tour of a brain afflicted with Alzheimer's disease, and you will find minuscule clumps of protein that...

Next Post
Study: BNT162b2 vaccine boosts neutralizing antibodies to ancestral SARS-CoV-2 & Omicron variant in adults received 2-dose inactivated vaccine. Image Credit: Tamer Adel Soliman/Shutterstock

Immunogenicity to BNT162b2 booster in adults who had previously received inactivated COVID-19 vaccination

Study: Discovery of a SARS-CoV-2 Broadly-Acting Neutralizing Antibody with Activity against Omicron and Omicron + R346K Variants. Image Credit: Tatiana Shepeleva/Shutterstock

Broad and potent neutralizing activity of human IgG1 LALA antibody against SARS-CoV-2 variants

0 0 votes
Article Rating
Subscribe
Login
Notify of
guest
guest
0 Comments
Inline Feedbacks
View all comments

Support

  • Contact
  • Disclaimer
  • Home
  • Privacy Policy
  • Terms And Conditions

Categories

  • Coronavirus
  • Insights From Industry
  • Interviews
  • Mediknowledge
  • News
  • Thought Leaders
  • Whitepapers

More News

  • detail of microscope lenses observing a slide with sample wells in the laboratory angellodeco e84c7a54b30247a0a1ad679809f0b548 620x480
    Study may pave the way for better multiple sclerosis drugs
  • Study: Presence of Recombinant Bat Coronavirus GCCDC1 in Cambodian Bats. Image Credit: Rudmer Zwerver/Shutterstock
    Recombinant bat coronavirus reported in wide-ranging Cambodian bat
  • Home
  • Privacy Policy
  • Contact
  • Disclaimer
  • Terms And Conditions

© 2022 Medical Finance - Latest Financial and Business News

No Result
View All Result
  • Interviews
  • Mediknowledge
  • News
  • Insights From Industry
  • Coronavirus
  • Thought Leaders
  • Whitepapers
wpDiscuz
0
0
Would love your thoughts, please comment.x
()
x
| Reply