Friday, May 20, 2022
No Result
View All Result
Medical Finance
  • Home
  • News
  • Interviews
  • Mediknowledge
  • Insights From Industry
  • Thought Leaders
  • Coronavirus
  • Whitepapers
  • Home
  • News
  • Interviews
  • Mediknowledge
  • Insights From Industry
  • Thought Leaders
  • Coronavirus
  • Whitepapers
No Result
View All Result
Medical Finance
No Result
View All Result
Home News

Scientists explore how proteins bind with specific companions inside cells

by Medical Finance
in News
Scientists unravel how blood cells mount the first line of defense against viruses
10
SHARES
107
VIEWS
Share on FacebookShare on Twitter

Despite its minute size, a single cell contains billions of molecules that bustle around and bind to one another, carrying out vital functions. The human genome encodes about 20,000 proteins, most of which interact with partner proteins to mediate upwards of 400,000 distinct interactions. These partners don’t just latch onto one another haphazardly; they only bind to very specific companions that they must recognize inside the crowded cell. If they create the wrong pairings -; or even the right pairings at the wrong place or wrong time -; cancer or other diseases can ensue. Scientists are hard at work investigating these protein-protein relationships, in order to understand how they work, and potentially create drugs that disrupt or mimic them to treat disease.

The average human protein is composed of approximately 400 building blocks called amino acids, which are strung together and folded into a complex 3D structure. Within this long string of building blocks, some proteins contain stretches of 4-6 amino acids called short linear motifs (SLiMs), which mediate protein-protein interactions. Despite their simplicity and small size, SLiMs and their binding partners facilitate key cellular processes. However, it’s been historically difficult to devise experiments to probe how SLiMs recognize their specific binding partners.

To address this problem, a group led by Theresa Hwang PhD ’21 designed a screening method to understand how SLiMs selectively bind to certain proteins, and even distinguish between those with similar structures. Using the detailed information they gleaned from studying these interactions, the researchers created their own synthetic molecule capable of binding extremely tightly to a protein called ENAH, which is implicated in cancer metastasis. The team shared their findings in a pair of eLife studies, one published on January 25, 2022 and the other on December 2, 2021.

The ability to test hundreds of thousands of potential SLiMs for binding provides a powerful tool to explore why proteins prefer specific SLiM partners over others. As we gain an understanding of the tricks that a protein uses to select its partners, we can apply these in protein design to make our own binders to modulate protein function for research or therapeutic purposes.”


Amy Keating, professor of biology and biological engineering and senior author on both studies

Most existing screens for SLiMs simply select for short, tight binders, while neglecting SLiMs that don’t grip their partner proteins quite as strongly. To survey SLiMs with a wide range of binding affinities, Keating, Hwang, and their colleagues developed their own screen called MassTitr.

The researchers also suspected that the amino acids on either side of the SLiM’s core 4-6 amino acid sequence might play an underappreciated role in binding. To test their theory, they used MassTitr to screen the human proteome in longer chunks comprised of 36 amino acids, in order to see which “extended” SLiMs would associate with the protein ENAH.

ENAH, sometimes referred to as Mena, helps cells to move. This ability to migrate is critical for healthy cells, but cancer cells can coopt it to spread. Scientists have found that reducing the amount of ENAH decreases the cancer cells’s ability to invade other tissues -; suggesting that formulating drugs to disrupt this protein and its interactions could treat cancer.

Thanks to MassTitr, the team identified 33 SLiM-containing proteins that bound to ENAH -; 19 of which are potentially novel binding partners. They also discovered three distinct patterns of amino acids flanking core SLiM sequences that helped the SLiMs bind even tighter to ENAH. Of these extended SLiMs, one found in a protein called PCARE bound to ENAH with the highest known affinity of any SLiM to date.

Next, the researchers combined a computer program called dTERMen with X-ray crystallography in order understand how and why PCARE binds to ENAH over ENAH’s two nearly identical sister proteins (VASP and EVL). Hwang and her colleagues saw that the amino acids flanking PCARE’s core SliM caused ENAH to change shape slightly when the two made contact, allowing the binding sites to latch onto one another. VASP and EVL, by contrast, could not undergo this structural change, so the PCARE SliM did not bind to either of them as tightly.

Inspired by this unique interaction, Hwang designed her own protein that bound to ENAH with unprecedented affinity and specificity. “It was exciting that we were able to come up with such a specific binder,” she says. “This work lays the foundation for designing synthetic molecules with the potential to disrupt protein-protein interactions that cause disease -; or to help scientists learn more about ENAH and other SLiM-binding proteins.”

Ylva Ivarsson, a professor of biochemistry at Uppsala University who was not involved with the study, says that understanding how proteins find their binding partners is a question of fundamental importance to cell function and regulation. The two eLife studies, she explains, show that extended SLiMs play an underappreciated role in determining the affinity and specificity of these binding interactions.

“The studies shed light on the idea that context matters, and provide a screening strategy for a variety of context-dependent binding interactions,” she says. “Hwang and co-authors have created valuable tools for dissecting the cellular function of proteins and their binding partners. Their approach could even inspire ENAH-specific inhibitors for therapeutic purposes.”

Hwang’s biggest takeaway from the project is that things are not always as they seem: even short, simple protein segments can play complex roles in the cell. As she puts it: “We should really appreciate SLiMs more.”

Source:

Massachusetts Institute of Technology Department of Biology

Journal reference:

Hwang, T., et al. (2022) Native proline-rich motifs exploit sequence context to target actin-remodeling Ena/VASP protein ENAH. eLife. doi.org/10.7554/eLife.70680.

Total
0
Shares
Share 0
Tweet 0
Pin it 0
Share 0
Medical Finance

Medical Finance

Related Posts

PhoreMost and POLARISqb announce a multi-target collaboration to investigate next-generation cancer therapies

New insights into molecular mechanisms that underpin the body’s natural defenses against skin cancer

by Medical Finance
May 20, 2022
0

A study published today in Cell Reports reveals important insights into the molecular mechanisms that underpin the body's natural defenses...

Monitoring the presence of enteric pathogens in imported seafood

Monitoring the presence of enteric pathogens in imported seafood

by Medical Finance
May 20, 2022
0

To monitor the presence of enteric pathogens in imported seafood, the authors of this paper collected a total of 140...

AI-driven solution predicts RNA and DNA binding sites to accelerate rational drug discovery

AI-driven solution predicts RNA and DNA binding sites to accelerate rational drug discovery

by Medical Finance
May 20, 2022
0

The iMolecule group from Skoltech has developed an artificial intelligence-driven solution that uses data on the structure of RNA or...

Excelitas technologies introduces µPAX-3 Pulsed Xenon Light Source

Excelitas technologies introduces µPAX-3 Pulsed Xenon Light Source

by Medical Finance
May 20, 2022
0

Excelitas Technologies Corp., a leading industrial technology manufacturer focused on delivering innovative, market-driven photonic solutions, announces the new µPAX-3 Pulsed...

Uno single tube reader

High resolution single tube reader

by Medical Finance
May 20, 2022
0

From Ziath LtdJan 12 2022Reviewed by Maria Osipova Ziath announce the Uno single tube reader – a powerful device packed...

Flowmeter Solutions for High-Speed Batch Dosing

Flowmeter Solutions for High-Speed Batch Dosing

by Medical Finance
May 20, 2022
0

Titan Enterprises has published a white paper reporting on an investigation into the use of electronic flow meters in high-speed...

Next Post
Scientists unravel how blood cells mount the first line of defense against viruses

Genome research explains why oats could be suitable for most people with celiac disease

Swapping single food item for a more planet-friendly alternative could reduce diet’s carbon footprint

First large-scale estimate of live microbes consumed by Americans daily

0 0 votes
Article Rating
Subscribe
Login
Notify of
guest
guest
0 Comments
Inline Feedbacks
View all comments

Support

  • Contact
  • Disclaimer
  • Home
  • Privacy Policy
  • Terms And Conditions

Categories

  • Coronavirus
  • Insights From Industry
  • Interviews
  • Mediknowledge
  • News
  • Thought Leaders
  • Whitepapers

More News

  • Pneumonia 620x480
    Study finds higher risk of dementia among patients hospitalized with COVID-19 pneumonia
  • 174318220 620x480
    Research opens the door to novel therapies for cancer induced by hedgehog signaling pathway
  • Home
  • Privacy Policy
  • Contact
  • Disclaimer
  • Terms And Conditions

© 2022 Medical Finance - Latest Financial and Business News

No Result
View All Result
  • Interviews
  • Mediknowledge
  • News
  • Insights From Industry
  • Coronavirus
  • Thought Leaders
  • Whitepapers
wpDiscuz
0
0
Would love your thoughts, please comment.x
()
x
| Reply