Friday, May 20, 2022
No Result
View All Result
Medical Finance
  • Home
  • News
  • Interviews
  • Mediknowledge
  • Insights From Industry
  • Thought Leaders
  • Coronavirus
  • Whitepapers
  • Home
  • News
  • Interviews
  • Mediknowledge
  • Insights From Industry
  • Thought Leaders
  • Coronavirus
  • Whitepapers
No Result
View All Result
Medical Finance
No Result
View All Result
Home News

Researchers develop new method to ‘time jump’ skin cells by 30 years

by Medical Finance
in News
Researchers develop new method to ‘time jump’ skin cells by 30 years
9
SHARES
99
VIEWS
Share on FacebookShare on Twitter

Research from the Babraham Institute has developed a method to ‘time jump’ human skin cells by 30 years, turning back the aging clock for cells without losing their specialized function. Work by researchers in the Institute’s Epigenetics research programme has been able to partly restore the function of older cells, as well as rejuvenating the molecular measures of biological age. The research is published today in the journal eLife and whilst at an early stage of exploration, it could revolutionize regenerative medicine.

What is regenerative medicine?

As we age, our cells’ ability to function declines and the genome accumulates marks of ageing. Regenerative biology aims to repair or replace cells including old ones. One of the most important tools in regenerative biology is our ability to create ‘induced’ stem cells. The process is a result of several steps, each erasing some of the marks that make cells specialised. In theory, these stem cells have the potential to become any cell type, but scientists aren’t yet able to reliably recreate the conditions to re-differentiate stem cells into all cell types.

Turning back time

The new method, based on the Nobel Prize winning technique scientists use to make stem cells, overcomes the problem of entirely erasing cell identity by halting reprogramming part of the way through the process. This allowed researchers to find the precise balance between reprogramming cells, making them biologically younger, while still being able to regain their specialized cell function.

In 2007, Shinya Yamanaka was the first scientist to turn normal cells, which have a specific function, into stem cells which have the special ability to develop into any cell type. The full process of stem cell reprogramming takes around 50 days using four key molecules called the Yamanaka factors. The new method, called ‘maturation phase transient reprogramming’, exposes cells to Yamanaka factors for just 13 days. At this point, age-related changes are removed and the cells have temporarily lost their identity. The partly reprogrammed cells were given time to grow under normal conditions, to observe whether their specific skin cell function returned. Genome analysis showed that cells had regained markers characteristic of skin cells (fibroblasts), and this was confirmed by observing collagen production in the reprogrammed cells.

Age isn’t just a number

To show that the cells had been rejuvenated, the researchers looked for changes in the hallmarks of aging. As explained by Dr Diljeet Gill, a postdoc in Wolf Reik’s lab at the Institute who conducted the work as a PhD student: “Our understanding of aging on a molecular level has progressed over the last decade, giving rise to techniques that allow researchers to measure age-related biological changes in human cells. We were able to apply this to our experiment to determine the extent of reprogramming our new method achieved.”

Researchers looked at multiple measures of cellular age. The first is the epigenetic clock, where chemical tags present throughout the genome indicate age. The second is the transcriptome, all the gene readouts produced by the cell. By these two measures, the reprogrammed cells matched the profile of cells that were 30 years younger compared to reference data sets.

The potential applications of this technique are dependent on the cells not only appearing younger, but functioning like young cells too. Fibroblasts produce collagen, a molecule found in bones, skin tendons and ligaments, helping provide structure to tissues and heal wounds. The rejuvenated fibroblasts produced more collagen proteins compared to control cells that did not undergo the reprogramming process. Fibroblasts also move into areas that need repairing. Researchers tested the partially rejuvenated cells by creating an artificial cut in a layer of cells in a dish. They found that their treated fibroblasts moved into the gap faster than older cells. This is a promising sign that one day this research could eventually be used to create cells that are better at healing wounds.

In the future, this research may also open up other therapeutic possibilities; the researchers observed that their method also had an effect on other genes linked to age-related diseases and symptoms. The APBA2 gene, associated with Alzheimer’s disease, and the MAF gene with a role in the development of cataracts, both showed changes towards youthful levels of transcription.

The mechanism behind the successful transient reprogramming is not yet fully understood, and is the next piece of the puzzle to explore. The researchers speculate that key areas of the genome involved in shaping cell identity might escape the reprogramming process.

Our results represent a big step forward in our understanding of cell reprogramming. We have proved that cells can be rejuvenated without losing their function and that rejuvenation looks to restore some function to old cells. The fact that we also saw a reverse of aging indicators in genes associated with diseases is particularly promising for the future of this work.”


Dr Diljeet Gill

Professor Wolf Reik, a group leader in the Epigenetics research programme who has recently moved to lead the Altos Labs Cambridge Institute, said: “This work has very exciting implications. Eventually, we may be able to identify genes that rejuvenate without reprogramming, and specifically target those to reduce the effects of aging. This approach holds promise for valuable discoveries that could open up an amazing therapeutic horizon.”

Source:

Journal reference:

Gill, D., et al. (2022) Multi-omic rejuvenation of human cells by maturation phase transient reprogramming. eLife. doi.org/10.7554/eLife.71624.

Total
0
Shares
Share 0
Tweet 0
Pin it 0
Share 0
Medical Finance

Medical Finance

Related Posts

Scientists unravel how blood cells mount the first line of defense against viruses

Food science experts characterize the properties of protein in several insect powders

by Medical Finance
May 20, 2022
0

As the human population grows to a predicted 10 billion by 2050 and overall land mass remains constant, traditional animal...

Study reveals genomic regions that could help understand obesity

Study reveals genomic regions that could help understand obesity

by Medical Finance
May 20, 2022
0

A new study has helped to shine light on the genetic pathways underlying obesity. The findings could help develop more...

Horizontal gene transfer between viruses and hosts plays a major role in driving evolution

Researchers identify gene variant that protects against severe COVID-19

by Medical Finance
May 20, 2022
0

An international metastudy led by researchers at Karolinska Institutet in Sweden has identified a specific gene variant that protects against...

Scientists unravel how blood cells mount the first line of defense against viruses

Discovery of new protein could lead to effective treatments for developmental, neurological disorders

by Medical Finance
May 20, 2022
0

Understanding how the brain develops is crucial to formulating treatments and management protocols for a variety of developmental disorders, as...

Study: Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Image Credit: metamorworks / Shutterstock.com

Virus-like particles as delivery vehicles for gene-editing

by Medical Finance
May 20, 2022
0

In a recent Cell Press study, scientists delivered gene-editing proteins through the use of engineered virus-like particles (eVLPs), which mediated...

PhoreMost and POLARISqb announce a multi-target collaboration to investigate next-generation cancer therapies

New insights into molecular mechanisms that underpin the body’s natural defenses against skin cancer

by Medical Finance
May 20, 2022
0

A study published today in Cell Reports reveals important insights into the molecular mechanisms that underpin the body's natural defenses...

Next Post
Study: A virus-specific monocyte inflammatory phenotype is induced by SARS-CoV-2 at the immune–epithelial interface. Image Credit: MIA Studio/Shutterstock

Researchers investigate SARS-CoV-2 specific inflammatory response

IVM-MS2, “The most compact all-in-one IntraVital two-photon microscopy system in the world”

IVM-MS2, “The most compact all-in-one IntraVital two-photon microscopy system in the world”

0 0 votes
Article Rating
Subscribe
Login
Notify of
guest
guest
0 Comments
Inline Feedbacks
View all comments

Support

  • Contact
  • Disclaimer
  • Home
  • Privacy Policy
  • Terms And Conditions

Categories

  • Coronavirus
  • Insights From Industry
  • Interviews
  • Mediknowledge
  • News
  • Thought Leaders
  • Whitepapers

More News

  • Protein 620x480
    Molecular cage helps researchers to get atomic-level details of key cancer protein
  • Study: miR-155: A Potential Biomarker for Predicting Mortality in COVID-19 Patients. Image Credit: ART-ur / Shutterstock
    Circulating miR-155 may predict chances of survival in hospitalized COVID-19 patients
  • Home
  • Privacy Policy
  • Contact
  • Disclaimer
  • Terms And Conditions

© 2022 Medical Finance - Latest Financial and Business News

No Result
View All Result
  • Interviews
  • Mediknowledge
  • News
  • Insights From Industry
  • Coronavirus
  • Thought Leaders
  • Whitepapers
wpDiscuz
0
0
Would love your thoughts, please comment.x
()
x
| Reply