Sunday, July 3, 2022
No Result
View All Result
Medical Finance
  • Home
  • News
  • Interviews
  • Mediknowledge
  • Insights From Industry
  • Thought Leaders
  • Coronavirus
  • Whitepapers
  • Home
  • News
  • Interviews
  • Mediknowledge
  • Insights From Industry
  • Thought Leaders
  • Coronavirus
  • Whitepapers
No Result
View All Result
Medical Finance
No Result
View All Result
Home News

Quantum dots can quantify specific types of cells inside deep tissues of the body

by Medical Finance
in News
Quantum dots can quantify specific types of cells inside deep tissues of the body
9
SHARES
99
VIEWS
Share on FacebookShare on Twitter

To accurately diagnose and treat diseases, doctors and researchers need to see inside bodies. Medical imaging tools have come a long way since the humble x-ray, but most existing tools remain too coarse to quantify numbers or specific types of cells inside deep tissues of the body.

Quantum dots can do that, according to new research in mice from the University of Illinois.

Quantum dots can measure things in the body that are very, very dynamic and complicated and that we can’t see currently. They give us the ability to count cells, detect their exact locations, and observe changes over time. I think it is really a huge advance.”


Andrew Smith, Study Co-Author and Professor, Department of Bioengineering, University of Illinois

Quantum dots are lab-grown nanoparticles – just a few hundred atoms in size – with special optical properties detectable by standard microscopy, tomography (e.g., PET/CT scanners), and fluorescence imaging. Depending on their size and composition, bioengineers like Smith can make them glow in specific colors and emit light in the infrared spectrum.

“Emitting light in the infrared is rare. Very little light is emitted by tissues in the infrared, so if you put them in the body, they appear very bright. We can see deeply into the body and can more accurately measure things than we could using technology in the visible range,” Smith says.

In the ACS Nanostudy, Smith and colleagues let quantum dots loose on macrophages.

When our bodies need to gobble up pathogens or clean up cellular debris, macrophages go to work. One of their jobs is to initiate inflammation, making the environment inhospitable to harmful microbes. But sometimes they do that job too well. Depending on the tissue they’re in, chronic inflammation due to macrophage activity can lead to diabetes, cardiovascular issues, cancers, and more.

The U of I team was particularly interested in macrophages in fat, or adipose tissue.

“With weight gain and obesity, macrophage numbers are known to increase in adipose tissue and tend to shift towards an inflammatory phenotype, which contributes to the development of insulin resistance and metabolic syndrome. The number and location of macrophages in adipose tissue are poorly described, especially in vivo,” says Kelly Swanson, Kraft Heinz Company Endowed Professor in Human Nutrition in theDepartment of Animal Sciences at U of I and study co-author.

“The quantum dots our group developed allow for better quantification and characterization of the cells present in adipose tissue and their spatial distribution,” he adds.

The team created quantum dots coated with dextran, a sugar molecule that also targets macrophages in adipose tissue. As a proof-of-concept, they injected these quantum dots into obese mice and compared imaging results against dextran alone, the current standard for imaging macrophages.

Quantum dots outperformed dextran alone across all imaging platforms, including simple optical techniques.

“Quantum dots put out a huge amount of light, giving us the ability to measure specific cell types to a greater degree and identify where they are,” Smith says. “That degree of light output allows the use of optical techniques, which are much more accessible than other imaging technologies. Compared with MRI and PET scanners, they’re cheap instruments that can be put into a small clinic. Everybody could have one.”

Although quantum dots haven’t been used yet in humans, Swanson sees a future in which a simple optical technology like ultrasound could be used to non-invasively diagnose and track inflammatory macrophages in overweight patients.

“There could be a device like an ultrasound where you scan somebody, and even if a patient’s weight hasn’t changed, a doctor could tell if the cell types are changing. More inflammatory cells could predict insulin resistance and other issues,” he says. “That’s why I’m interested in it, for its diagnostic properties.”

Quantum dots aren’t used in humans because they are typically made with heavy metals such as cadmium and mercury, and scientists still haven’t figured out how they’re metabolized and removed from the body. Smith and his team are working on quantum dots made with safer elements, but until then, they remain an invaluable research tool. For example, their long circulation time – nine times as long as dextran in the current study – could give diagnosticians a way to go beyond a snapshot in time.

“There’s a huge level of variability of macrophages even across a day. Adipose tissue may have a very high number in the middle of the day, and then it drops way down,” Smith says. “In animal studies, we can sacrifice animals at the start and end of a day to study the trend, but with quantum dots, we might not have to do that. You could track one animal over time to see its progression.

“Quantum dots offer a huge amount of value in animal studies. So even if quantum dots don’t make it to humans, if we never find a way to make them non-toxic, the value is still really great.”

Source:

University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

Journal reference:

Deng, H., et al. (2022) Dextran-Mimetic Quantum Dots for Multimodal Macrophage Imaging In Vivo, Ex Vivo, and In Situ. ACS Nano. https://doi.org/10.1021/acsnano.1c07010.

Total
0
Shares
Share 0
Tweet 0
Pin it 0
Share 0
Medical Finance

Medical Finance

Related Posts

Scientists discover a division of labor between genetic switches

New, safer CRISPR approach may help correct genetic defects in the future

by Medical Finance
July 3, 2022
0

Curing debilitating genetic diseases is one of the great challenges of modern medicine. During the past decade, development of CRISPR...

Scientists shed light on placenta’s role in transferring vitamin D to fetus during pregnancy

Scientists use transcriptomics to explore the ancient origins of placenta

by Medical Finance
July 3, 2022
0

The fossil record tells us about ancient life through the preserved remains of body parts like bones, teeth and turtle...

Slight pH adjustment may turn a metabolic inhibiting drug into promising COVID-19 treatment

Study shows the effects of “forever chemicals” on soil structure and function

by Medical Finance
July 3, 2022
0

Soils are impacted globally by several anthropogenic factors, including chemical pollutants. Among those, perfluoroalkyl and polyfluoroalkyl substances (PFAS) are of...

Horizontal gene transfer between viruses and hosts plays a major role in driving evolution

Chemical-based sequencing method to efficiently study DNA methylation

by Medical Finance
July 3, 2022
0

One way cells can control the activities of their genes is by adding small chemical modifications to the DNA that...

Study: Cell culture model system utilizing engineered A549 cells to express high levels of ACE2 and TMPRSS2 for investigating SARS-CoV-2 infection and antivirals. Image Credit: Microgen / Shutterstock.com

Lab engineered human A549 lung cell model conducive for investigating SARS-CoV-2 antivirals

by Medical Finance
July 3, 2022
0

In a study recently published on the bioRxiv* preprint server, researchers developed a human A549 lung epithelial cell-based model to...

Bacterial biofilms use a developmental patterning mechanism seen in plants and animals

Composition of poplar tree microbiome changes dramatically over time, study finds

by Medical Finance
July 3, 2022
0

The science Recent work shows that the plant microbiome-;the microorganisms in a plant and its immediate environment-;influences plant health, survival,...

Next Post
Genome editing in vascular endothelial cells made possible with a powerful new delivery system

Researchers are in the race to beat Omicron

Study: Real-World Monitoring of BNT162b2 Vaccine-Induced SARS-Cov-2 B And T Cell Immunity in Naive Healthcare Workers: A Prospective Single Center Study. Image Credit: diy13 / Shutterstock.com

Robust BNT162b2 vaccine-induced B and T-cell immunity against early SARS-CoV-2 variants

0 0 votes
Article Rating
Subscribe
Login
Notify of
guest
guest
0 Comments
Inline Feedbacks
View all comments

Support

  • Contact
  • Disclaimer
  • Home
  • Privacy Policy
  • Terms And Conditions

Categories

  • Coronavirus
  • Insights From Industry
  • Interviews
  • Mediknowledge
  • News
  • Thought Leaders
  • Whitepapers

More News

  • Gene 620x480
    Distinct maternal signals rhythmically control a variety of neuronal processes, study finds
  • Study: Multi-ancestry fine mapping implicates OAS1 splicing in risk of severe COVID-19. Image Credit: Billion Photos/Shutterstock
    Study finds evidence to strongly implicate OAS1 as an effector gene influencing COVID-19 severity
  • Home
  • Privacy Policy
  • Contact
  • Disclaimer
  • Terms And Conditions

© 2022 Medical Finance - Latest Financial and Business News

No Result
View All Result
  • Interviews
  • Mediknowledge
  • News
  • Insights From Industry
  • Coronavirus
  • Thought Leaders
  • Whitepapers
wpDiscuz
0
0
Would love your thoughts, please comment.x
()
x
| Reply