Thursday, June 30, 2022
No Result
View All Result
Medical Finance
  • Home
  • News
  • Interviews
  • Mediknowledge
  • Insights From Industry
  • Thought Leaders
  • Coronavirus
  • Whitepapers
  • Home
  • News
  • Interviews
  • Mediknowledge
  • Insights From Industry
  • Thought Leaders
  • Coronavirus
  • Whitepapers
No Result
View All Result
Medical Finance
No Result
View All Result
Home Coronavirus

Narrative review reports two important mediators in SARS-CoV-2-induced ischemic stroke recovery

by Medical Finance
in Coronavirus
Study: Neuroinflammation and COVID-19 Ischemic Stroke Recovery—Evolving Evidence for the Mediating Roles of the ACE2/Angiotensin-(1–7)/Mas Receptor Axis and NLRP3 Inflammasome. Image Credit: Fotosr52/Shutterstock
9
SHARES
99
VIEWS
Share on FacebookShare on Twitter

A recent narrative review posted to the International Journal of Molecular Sciences explored neuroinflammation and coronavirus disease 2019 (COVID-19)-induced ischemic stroke recovery.

Study: Neuroinflammation and COVID-19 Ischemic Stroke Recovery—Evolving Evidence for the Mediating Roles of the ACE2/Angiotensin-(1–7)/Mas Receptor Axis and NLRP3 Inflammasome. Image Credit: Fotosr52/Shutterstock
Study: Neuroinflammation and COVID-19 Ischemic Stroke Recovery—Evolving Evidence for the Mediating Roles of the ACE2/Angiotensin-(1–7)/Mas Receptor Axis and NLRP3 Inflammasome. Image Credit: Fotosr52/Shutterstock

Background

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been linked to cerebrovascular events, particularly acute ischemic strokes (AIS). However, the etiology of COVID-19-related cerebrovascular events remains unknown and is presumed to be complicated.

Studies report that cerebrovascular events could be connected to a direct viral invasion or an indirect virus-mediated prothrombotic condition in the presence or absence of typical cerebrovascular risk factors.

About the study

In the present review, the researchers evaluated the function of nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome in COVID-19-mediated AIS. The team also evaluated angiotensin-converting enzyme 2 (ACE2)/angiotensin (Ang)-(1-7)/mitochondrial assembly receptor (MasR) axis role in SARS-CoV-2-induced AIS.

The scientists determined the potential of these neuroinflammation mediators in brain repair and secondary preventative measures against AIS in stroke rehabilitation.

The literature search was conducted using keywords like neuroinflammation, COVID-19, and NLRP3 Inflammasome in online databases and search engines. The internet databases used included SCOPUS, PubMed, Google Scholar, and the Institute for Scientific Information (ISI) Web of Knowledge.

Only open access and free full-text articles, such as systematic and narrative reviews, meta-analyses, and original research papers, in the English language, were selected for the current review.

SARS-CoV-2-related ischemic stroke

Recent studies suggest that CoVs are responsible for about 10% of acute respiratory infections, and nearly 15% of β-CoVs-infected individuals experience severe illness, with 6% being critically sick. Further, the acute, subacute, and long-term impacts of COVID-19 might result in respiratory failure or multiple organ dysfunction (MODS).

Published reports have indicated that the human CoVs (HCoVs)-induced cytokine storm is the prime reason for death in people infected by these viruses. The SARS-CoV and Middle Eastern respiratory syndrome CoV (MERS-CoV)-recovered individuals also demonstrated long-term cytokine storm-hyperinflammation and coagulopathy symptoms.

A recent review indicated that post-acute SARS-CoV-2 consists of persistent, delayed, or long-standing complications of COVID-19 more than four weeks after the symptom onset. The hypothesized pathophysiological underpinnings for post-acute SARS-CoV-2 include virus-specific pathophysiological alterations and enhanced thrombo-inflammation.

Several molecular risk elements associated with COVID-19, such as generalized hypercoagulability, endothelial cell (EC) damage, cytokine storm, heightened thrombo-inflammation, ACE2 receptor-mediated cytotoxic impacts on nervous systems, and renin-angiotensin system (RAS) dysfunction, might result in AIS.

Furthermore, a recent meta-analysis found that those who developed AIS after COVID-19 infection were more likely to experience depression and anxiety. Prior research works implied that elevated AIS-induced inflammation was linked to depression following stroke.

Altogether, recent reviews have indicated multiple post-acute to long-SARS-CoV-2 symptoms such as fever, fatigue, chest pain, depression, and neurocognitive difficulties linked to impaired neurological systems.

ACE2/Ang-(1-7)/MasR axis’s role in SARS-CoV-2-induced ischemic stroke

Two proposed routes of SARS-CoV-2 invasion into the brain are 1) hematogenous spread and 2) via olfactory epithelium. In addition, SARS-CoV-2 gains entry to the brain through the ACE2 receptors present in the neuro-glial cells. A hypothesized mechanism of endothelitis and endothelial dysfunction in SARS-CoV-2 patients was RAS disruption, including ACE2 receptor downregulation in vascular ECs.

The attachment of SARS-CoV-2 to the ACE2 receptor causes endocytosis in the receptor, resulting in downregulation or depletion of the protective endothelial ACE2. The interrupted ACE and ACE2 balance also result in heightened proinflammatory disposition and endothelial damage contributing to the pathogenesis of ischemic stroke.

The ACE2 downregulation results in its biological substrate, Des-arg9-bradykinin (DABK), metabolization via the stimulation of DABK/BK receptor B1 (BKB1R) axis signaling. This phenomenon induces inflammation via the release of various proinflammatory mediators.

ACE2/Ang-(1-7)/MasR axis stimulation demonstrated extensive therapeutic capacity in stroke. ACE2/Ang-(1-7)/MasR axis is a well-established angiotensin II counter-regulator, resulting in neuroprotection in stroke. The ACE2 overexpression causes neuroprotective outcomes and might aid in brain repair. Thus, increased MasR activation and modulation of the ACE2/Ang-(1-7)/MasR axis probably enhance neurorehabilitation performance.

NLRP3 inflammasome’s role in SARS-CoV-2-induced ischemic stroke

Overexpression of inflammatory cytokines leads to blood-brain barrier (BBB) damage, allowing SARS-CoV-2 entry into the brain parenchyma. It has been proposed that cytokines and the NLRP3 inflammasome are the key immunological elements mediating the immune response and cytokine storms during the viral invasion. As a result, it is reasonable to assume that the NLRP3 inflammasome is implicated in COVID-19-associated cytokine storms.

Through purinergic 2X7 receptor (P2X7R) activation and elevated extracellular adenosine triphosphate (ATP) levels, SARS-CoV-2 induces NLRP3 inflammasome stimulation. This impact is due to the high expression of P2X7R in neuro-glial cells.

Furthermore, the SARS-CoV-2-associated stimulation of a coagulation cascade through the mannan-binding lectin (MBL)-related serine protease 2 (MASP-2) complex also increases the NLRP3 inflammasome activation. The NLRP3 inflammasome stimulation causes excess release of damage-associated molecular patterns (DAMPs) via gasdermin-D-mediated cell death (GSDMD).

Emerging neurorehabilitation approaches for SARS-CoV-2-mediated ischemic stroke

Several investigations have demonstrated that RAS modulators could enhance functional and structural recovery following stroke. Preclinical investigations have reported that the ACE2/Ang-(1–7)/MasR axis modulation enhances neuroprotection against ischemic stroke. In addition, various studies have depicted that the ACE2/Ang-(1–7)/MasR axis and RAS modulators improve brain repair and neuroplasticity. Thus, RAS and ACE2/Ang-(1–7)/MasR axis modulators could impart anti-oxidative, anti-inflammatory, and neuroprotective potentials against negative impacts of post-ischemic stroke associated with or without SARS-CoV-2. They also enhance brain repair and recovery following a stroke.

Furthermore, the suppression of NLRP3 inflammasome using drugs such as curcumin, parthenolide, and artigenin aid in the recovery of ischemic stroke. NLRP3 inflammasome inhibition should be explored further to gain deeper insights into the molecular processes in post-ischemic stroke brain repair (with or without SARS-CoV-2).

Conclusions

The present narrative review emphasizes the need for a better understanding of the neuroprotection capacity of the NLRP3 inflammasome and the ACE2/Ang-(1-7)/MasR axis, with or without SARS-CoV-2-induced ischemic stroke. Lowered ACE2 expression is crucial to the core neurobiology of stroke recovery in the setting of SARS-CoV-2 infection. Reduction in the expression of ACE2 results in ACE2/Ang-(1–7)/MasR axis suppression and thrombo-inflammation.

Moreover, the AIS-stimulated NLRP3 inflammasome might increase the generation of various proinflammatory cytokines. This results in neuro-glial cell malfunction and nerve cell apoptosis.

Thus, the two aforesaid mediators serve as reasonable speculative molecular targets for possible treatment routes to boost functional recovery and neuroplasticity in stroke rehabilitation and secondary prevention approach in SARS-CoV-2 infection and AIS.

Journal reference:

  • Che Mohd Nassir CMN, Zolkefley MKI, Ramli MD, Norman HH, Abdul Hamid H, Mustapha M. (2022). Neuroinflammation and COVID-19 Ischemic Stroke Recovery—Evolving Evidence for the Mediating Roles of the ACE2/Angiotensin-(1–7)/Mas Receptor Axis and NLRP3 Inflammasome. International Journal of Molecular Sciences. doi: https://doi.org/10.3390/ijms23063085 https://www.mdpi.com/1422-0067/23/6/3085
Total
0
Shares
Share 0
Tweet 0
Pin it 0
Share 0
Medical Finance

Medical Finance

Related Posts

Study: Web and social media searches highlight menstrual irregularities as a global concern in COVID-19 vaccinations. Image Credit: 13_Phunkod / Shutterstock.com

The spread of menstrual irregularity and COVID-19 vaccines concerns on the web

by Medical Finance
June 30, 2022
0

In a recent study published on the medRxiv* preprint server, researchers discuss their findings from a trajectory analysis of data...

Study: Intestinal Ischemia: Unusual but Fearsome Complication of COVID-19 Infection. Image Credit: Andrii Vodolazhskyi/Shutterstock

Study investigates intestinal ischemia in COVID-19 patients

by Medical Finance
June 30, 2022
0

In a recent article published in the journal Biomedicines, a team of Italian scientists has presented case reports of five...

New tool could help detect geographical hotspots for mental health problems caused by COVID

Study describes the impact of COVID-19 pandemic on pediatric primary care mental health visits

by Medical Finance
June 30, 2022
0

A new study describes the impact of the COVID-19 pandemic on pediatric primary care mental health visits. Findings from the...

Study: Ocular tropism of SARS-CoV-2 with retinal inflammation through neuronal invasion in animal models. Image Credit: Kateryna Kon/Shutterstock

Study evaluates the ocular tropism and the possible ocular transmission of SARS-CoV-2 in animal models

by Medical Finance
June 30, 2022
0

In a recent study posted to the bioRxiv* preprint server, researchers demonstrated ocular tropism of severe acute respiratory syndrome coronavirus...

Fire closes hospital and displaces staff as Colorado battles omicron

A travel nurse leaves fears of hospital drug tampering across three states

by Medical Finance
June 30, 2022
0

Health officials in at least three states are investigating a travel nurse suspected of tampering with and potentially contaminating vials...

Understanding how coronavirus, RS virus and rhinovirus affect children

NTNU researcher explores how kids are affected by coronavirus, RS virus and rhinovirus

by Medical Finance
June 30, 2022
0

For two years now, the novel coronavirus SARS-CoV-2 has ravaged populations the world over. Some researchers believe that the virus...

Next Post
Study: Hidden codes in mRNA: Control of gene expression by m6A. Image Credit: nobeastsofierce/Shutterstock

Gene expression regulation by N6-methyladenosine

Study: Relative effectiveness of booster vs. 2-dose mRNA Covid-19 vaccination in the Veterans Health Administration: Self-controlled risk interval analysis. Image Credit: Exahardiwito / Shutterstock.com

COVID booster vaccination more effective relative to 2-dose series

0 0 votes
Article Rating
Subscribe
Login
Notify of
guest
guest
0 Comments
Inline Feedbacks
View all comments

Support

  • Contact
  • Disclaimer
  • Home
  • Privacy Policy
  • Terms And Conditions

Categories

  • Coronavirus
  • Insights From Industry
  • Interviews
  • Mediknowledge
  • News
  • Thought Leaders
  • Whitepapers

More News

  • Study: Protective prototype-Beta and Delta-Omicron chimeric RBD-dimer vaccines against SARS-CoV-2. Image Credit:  Favebrush/Shutterstock
    Chimeric Delta-Omicron RBD-dimer vaccine found to be effective against SARS-CoV-2 variants
  • Study: Persistent post-COVID-19 smell loss is associated with inflammatory infiltration and altered olfactory epithelial gene expression. Image Credit: megaflopp/Shutterstock
    Persistent loss of smell after COVID-19 associated with altered olfactory epithelial gene expression
  • Home
  • Privacy Policy
  • Contact
  • Disclaimer
  • Terms And Conditions

© 2022 Medical Finance - Latest Financial and Business News

No Result
View All Result
  • Interviews
  • Mediknowledge
  • News
  • Insights From Industry
  • Coronavirus
  • Thought Leaders
  • Whitepapers
wpDiscuz
0
0
Would love your thoughts, please comment.x
()
x
| Reply