Sunday, July 3, 2022
No Result
View All Result
Medical Finance
  • Home
  • News
  • Interviews
  • Mediknowledge
  • Insights From Industry
  • Thought Leaders
  • Coronavirus
  • Whitepapers
  • Home
  • News
  • Interviews
  • Mediknowledge
  • Insights From Industry
  • Thought Leaders
  • Coronavirus
  • Whitepapers
No Result
View All Result
Medical Finance
No Result
View All Result
Home Coronavirus

Multigranular and visualization approach precisely predicts SARS-CoV-2 outcomes

by Medical Finance
in Coronavirus
Study: Multiscale PHATE identifies multimodal signatures of COVID-19. Image Credit: Andrii Vodolazhskyi/Shutterstock
9
SHARES
99
VIEWS
Share on FacebookShare on Twitter

In a recent article posted to the journal Nature Biotechnology*, researchers presented the Multiscale potential of heat-diffusion for the affinity-based trajectory embedding (PHATE) approach that identified multimodal signatures of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

Study: Multiscale PHATE identifies multimodal signatures of COVID-19. Image Credit: Andrii Vodolazhskyi/Shutterstock
Study: Multiscale PHATE identifies multimodal signatures of COVID-19. Image Credit: Andrii Vodolazhskyi/Shutterstock

A range of methods that assess dozens of parameters in millions of cells obtained from large patient populations provides high-throughput biomedical data. However, current data exploration and dimensionality reduction tools like principal component analysis (PCA) only reveal a single level of data granularity.

A recent study on SARS-CoV-2 used the existing data characterization method to determine cellular responses at a single resolution. This study failed to establish variation among ineffective and effective immune responses. Together, more advanced computational techniques to extract biological insights are needed as the biomedical field creates more complex and high-dimensional datasets.

About the study 

In the present study, the researchers present a technique for learning abstracted biological traits that are directly predictive of illness outcome by sweeping over all levels of data granularity. The method named Multiscale PHATE was built on a coarse-graining method known as diffusion condensation.

The team applied Multiscale PHATE to a dataset of 54 million cells from 168 individuals hospitalized with SARS-CoV-2 infection. These patients were admitted to the Yale New Haven Hospital, United States (US). Further, the generalizability of Multiscale PHATE across various data types like clinical variables, single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq), single-cell ribonucleic acid sequencing (scRNA-seq), and flow cytometry were analyzed.

Findings

The results show that Multiscale PHATE overcomes two drawbacks of the original diffusion condensation using a denoising strategy over the diffusion potential. Diffusion condensation in its original form was ineffective in visualizing or understanding the nonlinear geometry of biological datasets and was susceptible to condensing points off the data manifold. Multiscale PHATE provided information regarding the nonlinear geometry of complex datasets and a method for rapid visualization and understanding about clusters at any resolution. 

In the first ablation study, Multiscale PHATE outperformed all other visualization methods, namely t-distributed stochastic neighborhood embedding (t-SNE) and uniform manifold approximation and projection (UMAP) in nearly all ranges of dropout and variation biological noises. Although Homology-UMAP provided good visualizations, their denoised manifold affinity preservation (DeMAP) scores were lower than Multiscale PHATE.

Similarly, in the second ablation study, PHATE turned out to be the most successful visualization strategy when embedding multiscale clusters formed by the coarse-graining method. In addition, Multiscale PHATE performed better than other clustering modalities such as single-linkage hierarchical clustering, Leiden, and Louvain on datasets with contrasting types and degrees of noise.

Multiscale PHATE identified subsets of peripheral blood mononuclear cells (PBMCs) linked with coronavirus disease 2019 (COVID-19)-associated survival and mortality using 251 blood samples from hospitalized SARS-CoV-2-infected patients. It revealed that the levels of monocytes (CD14+), B cells (CD19+), and granulocytes (CD16+SSChi) were high in deceased COVID-19 patients. Further, it suggests T cells (CD3+) enhanced the likelihood of survival in SARS-CoV-2 infection. 

In detail, Multiscale PHATE identified that the CD14−CD16hi and CD14+CD16int monocytes were elevated during severe COVID-19, and CD16 positively correlated with SARS-CoV-2-related death. In contrast, the human leukocyte antigen–DR isotype (HLA-DR) and CD14 correlated with survival. A unique monocyte population associated with mortality was identified by PHATE, named CD14−CD16hiHLA-DRlo. PHATE indicates although CD66b and CD14 neutrophils correlated negatively with COVID-19-related mortality, elevated side scatter (SSC) and forward scatter (FSC) in neutrophils were linked to SARS-CoV-2-associated death. This inference suggests CD16hiCD66blo neutrophils were elevated in people who died of SARS-CoV-2 infection.

While PHATE revealed that the antibody-secreting B cells called plasmablasts or CD86loHLADR−/CXCR3+ were elevated in people suffering adverse COVID-19 outcomes, the late-activated mature B cells named CD86 were associated with survival in SARS-CoV-2. The CD4+ interferon (IFN)-γ+ granzyme B+ Th17 cells were enriched in individuals who died of COVID-19. CD8+ T cell subset, T effector memory re-expressing CD45RA (TEMRA) cells were elevated in those with severe SARS-CoV-2 infection. Additionally, the activation state markers like CD45RA and HLA-DR over all CD8+ T cells were associated with COVID-19-related death in conditional density resampled estimate of mutual information (DREMI) analysis.

The DREMI analysis indicated that younger individuals and females were associated with an increased likelihood of mounting a robust T cell response in SARS-CoV-2 infection. Multiscale PHATE exhibited a prediction accuracy of 83.7±0.6% through five-time cross-validation, an accuracy of 74.2±0.8% for death cases, and 85.5±0.7% for survival cases. The myeloid-focused flow-cytometry panel of Multiscale PHATE identified that T cells, CD16hi neutrophils, and monocytes were three of the top-most predictors of eventual disease outcome in COVID-19. However, PHATE-derived outcomes exhibited 64.7±1.1% and 73.8±0.8% lower accuracy compared to the Louvain-computed and flow cytometry-gated populations results, respectively.

DREMI and conditional-density rescaled visualization (DREVI) analysis between PHATE-derived likelihood score for COVID-19 outcomes and clinical features indicated that systemic inflammatory markers, organ dysfunction, and markers of physiologic instability were linked to high risks of COVID-19-related mortality. Further, DREMI analysis suggested that the prolonged COVID-19 recovery period strongly correlated with kidney dysfunction and age.

Conclusion

The study findings offer a multiscale biological data exploration strategy to visualize, group, and analyze large-scale datasets. The Multiscale PHATE approach addresses a crucial gap in biological data exploration as it discovered clustering of data at different scales that predicted the clinical outcomes. In contrast to the existing clustering or dimensionality approaches, Multiscale PHATE provides a rapid manifold learning-based strategy for unveiling a continuum of structure and feature resolutions by comprehending data topology. Moreover, Multiscale PHATE can be used in conjunction with DREMI and manifold enhancement of latent dimensions (MELD) to derive detailed understandings of biological processes.

While T cells were associated with a protective effect, Multiscale PHATE combined with DREMI and MELD analysis identified a pathogenic CD4+ IFN-γ+ granzyme B+ Th17 cell subpopulation associated with negative outcomes in SARS-CoV-2. Further, Multiscale PHATE’s scalable technique becomes more crucial as datasets grow in size and the number of samples increases.

Total
0
Shares
Share 0
Tweet 0
Pin it 0
Share 0
Medical Finance

Medical Finance

Related Posts

Study: Bats host the most virulent—but not the most dangerous—zoonotic viruses. Image Credit: shutter_o / Shutterstock.com

Bats carry some of the most virulent, but not the most dangerous zoonotic viruses

by Medical Finance
July 3, 2022
0

The current coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is considered a...

Lung abnormalities may remain detectable long after COVID-19 pneumonia

As US nears 1 million covid deaths, one hard-hit county grapples with unthinkable loss

by Medical Finance
July 3, 2022
0

Connie Houtz didn't think covid would be that bad. She'd seen many people in this rural hamlet in central Pennsylvania...

When teens blow off parents’ pleas to get vaccinated, the consequences can be deadly

Additional boosters recommended for certain individuals at higher risk of severe COVID-19 outcomes

by Medical Finance
July 3, 2022
0

Data continue to show the importance of vaccination and booster doses to protect individuals both from infection and severe outcomes...

Study: The Efficacy of Common Household Cleaning Agents for SARS-CoV-2 Infection Control. Image Credit: Alexander Raths / Shutterstock.com

How effective are household cleaning agents against SARS-CoV-2?

by Medical Finance
July 3, 2022
0

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of the coronavirus disease 2019 (COVID-19), belongs to the...

Study: Virus blocking textile for SARS-CoV-2 using human body triboelectric energy harvesting. Image Credit: Harry Wedzinga/Shutterstock

Scientists develop virus-blocking textile that effectively repulses SARS-CoV-2

by Medical Finance
July 3, 2022
0

In a recent study published Cell Reports Physical Science, scientists have described a virus-blocking textile that prevents transmission of severe...

Surveying communities may be a useful tool for predicting COVID-19 case trajectories

Funding for the next pandemic

by Medical Finance
July 3, 2022
0

President Joe Biden released his budget proposal for 2023 this week, and it calls for a nearly 27% increase in...

Next Post
Scrapping many Covid testing measures is a grave mistake, says London Medical Laboratory

Cannabidiol found to inhibit SARS-CoV-2 infection in human cells and mice

Scientists discover antibody that inhibits a broad range of sarbecoviruses

Some states still pushing ineffective covid antibody treatments

0 0 votes
Article Rating
Subscribe
Login
Notify of
guest
guest
0 Comments
Inline Feedbacks
View all comments

Support

  • Contact
  • Disclaimer
  • Home
  • Privacy Policy
  • Terms And Conditions

Categories

  • Coronavirus
  • Insights From Industry
  • Interviews
  • Mediknowledge
  • News
  • Thought Leaders
  • Whitepapers

More News

  • Beckman Coulter Life Sciences launches CellMek SPS, a fully automated sample preparation system for clinical flow cytometry
    Beckman Coulter Life Sciences launches CellMek SPS, a fully automated sample preparation system for clinical flow cytometry
  • Report: Global excess deaths associated with COVID-19, January 2020 - December 2021. Image Credit: VK Studio / Shutterstock
    About 15 million additional deaths attributed to COVID-19 between January 2020 and December 2021
  • Home
  • Privacy Policy
  • Contact
  • Disclaimer
  • Terms And Conditions

© 2022 Medical Finance - Latest Financial and Business News

No Result
View All Result
  • Interviews
  • Mediknowledge
  • News
  • Insights From Industry
  • Coronavirus
  • Thought Leaders
  • Whitepapers
wpDiscuz
0
0
Would love your thoughts, please comment.x
()
x
| Reply