Friday, May 20, 2022
No Result
View All Result
Medical Finance
  • Home
  • News
  • Interviews
  • Mediknowledge
  • Insights From Industry
  • Thought Leaders
  • Coronavirus
  • Whitepapers
  • Home
  • News
  • Interviews
  • Mediknowledge
  • Insights From Industry
  • Thought Leaders
  • Coronavirus
  • Whitepapers
No Result
View All Result
Medical Finance
No Result
View All Result
Home News

Intestinal cells can change specializations during their lives, finds study

by Medical Finance
in News
Scientists unravel how blood cells mount the first line of defense against viruses
9
SHARES
99
VIEWS
Share on FacebookShare on Twitter

Intestinal cells can change specializations during their lives. The BMP signaling pathway – an important communication mechanism between cells – appears to be the driver of these changes.

That is what scientists from the groups of Hans Clevers (Hubrecht Instituut) and Ye-Guang Chen (Tshinghua University, Beijing) have concluded after research with organoids and mice. The study will be published in Cell Reports on 1 March 2022 and offers new insights into potential targets for the treatment of metabolic diseases.

The intestinal wall is made up of different types of cells. Some are for instance responsible for the uptake of nutrients, while others produce hormones. It was long thought that after their formation, intestinal cells specialize in one function that they continuously perform until they die. However, recent studies show that these cells can change specializations. Researchers from the groups of Hans Clevers and Ye-Guang Chen (Tsinghua University, Beijing) now discovered that these changes are driven by the BMP signaling pathway.

Driver of change

The BMP signaling pathway is one of many signaling pathways in the body. Such pathways form lines of communications between cells: with the production of a protein by one cell, it gives a signal to the next cell, which in turn produces proteins. Eventually, this whole cascade of protein production triggers certain processes – for example processes that are important during embryonic development. Joep Beumer, one of the researchers on the project, explains: “We knew that BMP signaling plays an important role in the initial specialization of intestinal cells. What we now discovered, is that it is also the driver of changes in the specializations of these cells over their lifetimes.

Migration

Intestinal cells arise from stem cells that lie in indentations (i.e. the crypts) of the intestinal wall. These intestinal cells then migrate up the intestinal villi. During their migration, they perform a certain function, for example the absorption of nutrients or the production of hormones. Once they reach the top of the villi, they die.

The function of intestinal cells changes during their migration along the villi. They for example produce antimicrobial components in the lower parts of the villi (at the start), while they are involved in absorbing fats later on in their journey.”


Joep Beumer, Researcher, Hubrecht Institute

This gradual change in the function of the cells is called zonation. “At the same time, the BMP signaling pathway is not very active in the crypts and in the lower parts of the villi, while it becomes more and more active higher up in the villi.

Human organoids

The scientists at the Clevers lab used intestinal organoids for their research. These are tiny 3D structures that can be grown in the lab and that mimic the function of the gut. In these miniature guts, the researchers were able to mimic conditions of low or high BMP signaling, similar to the altering environment along the intestinal villi. Using ‘Single cell RNA sequencing’, a technique that makes it possible to see which genes are active and which ones are not, they made a surprising discovery. Jens Puschhof explains:

“When BMP was active in the organoids, the cells in these miniature guts were identical to the cells located in the top of the villi, while inactivation of BMP made the cells in the organoids resemble the cells located in the lower parts of the villi. In other words, zonation turned out to be dependent on the BMP signaling pathway.”

Mouse model

The results found in organoids had to be confirmed in living organisms. Colleagues from the group of Ye-Guang Chen used a mouse model in which BMP signaling could be turned off in the gut. In mice with an inactive BMP signaling pathway in the gut, intestinal cells no longer changed specializations during their migration from the crypts to the villi. “That confirmed our conclusion: BMP signaling is the driver behind zonation of intestinal cells,” says Beumer.

Methodological implications

The study, to be published in Cell Reports, has important implications for the use of organoids for research. “Normally, researchers inhibit BMP signaling in organoids,” says Fjodor Yousef Yengej. “Although this proved beneficial for growth, not all functions of the gut are represented in these cultures.” Activation of BMP signaling may be required for research into certain topics, such as fat absorption.

Treatment of metabolic diseases

In addition to providing these new fundamental insights into the functions of intestinal cells during their lives, the study may ultimately contribute to the development of new treatments for metabolic diseases. “In certain metabolic diseases, there is an accumulation of fat in parts of the body such as the liver, or an imbalance in gut hormones. We now know that active BMP signaling stimulates fat absorption, so if we can inhibit signaling in these patients, we can also influence fat absorption,” Beumer concludes. BMP inhibitors targeting the gut are yet to be developed, but would have broad beneficial effects on metabolism.

Source:

Journal reference:

Beumer, J., et al. (2022) BMP gradient along the intestinal villus axis controls zonated enterocyte and goblet cell states. Cell Reports. doi.org/10.1016/j.celrep.2022.110438.

Total
0
Shares
Share 0
Tweet 0
Pin it 0
Share 0
Medical Finance

Medical Finance

Related Posts

Research provides a comprehensive map of exercise-induced signaling molecules present in the tissues

Research provides a comprehensive map of exercise-induced signaling molecules present in the tissues

by Medical Finance
May 20, 2022
0

It is well established that exercise improves health, and recent research has shown that exercise benefits the body in different...

New mathematical model can calculate the risk of resistance evolution for drug pairs

New mathematical model can calculate the risk of resistance evolution for drug pairs

by Medical Finance
May 20, 2022
0

Bacteria have dangerously evolved to thwart many of the medicines that were designed to kill them. As a result, a...

Study identifies a new potential pathway for developing therapeutics against Epstein-Barr virus

Study identifies a new potential pathway for developing therapeutics against Epstein-Barr virus

by Medical Finance
May 20, 2022
0

A new study by researchers at The Wistar Institute, an international biomedical research leader in cancer, immunology, infectious disease, and...

Bacterial biofilms use a developmental patterning mechanism seen in plants and animals

Fecal microbiota transplant can reverse hallmarks of aging in mice

by Medical Finance
May 20, 2022
0

In the search for eternal youth, poo transplants may seem like an unlikely way to reverse the aging process. However,...

General Internal Medicine and Geriatrics officially separated into two divisions

General Internal Medicine and Geriatrics officially separated into two divisions

by Medical Finance
May 20, 2022
0

The Department of Medicine's Division of General Internal Medicine and Geriatrics have been officially separated into two divisions, the Division...

Scientists unravel how blood cells mount the first line of defense against viruses

‘Decoy’ protein mitigates lung damage, death induced by aggressive SARS-CoV-2 variants

by Medical Finance
May 20, 2022
0

A drug treatment that acts as a decoy against SARS-CoV-2 was highly effective at preventing death and lung damage in...

Next Post
New tool could help detect geographical hotspots for mental health problems caused by COVID

Blood groups play a key role in whether people develop severe COVID-19, study suggests

Macrophages in the arteries can “sniff” out their surroundings and cause inflammation

Lipidomic profiling may provide early prediction of type 2 diabetes and cardiovascular disease risk

0 0 votes
Article Rating
Subscribe
Login
Notify of
guest
guest
0 Comments
Inline Feedbacks
View all comments

Support

  • Contact
  • Disclaimer
  • Home
  • Privacy Policy
  • Terms And Conditions

Categories

  • Coronavirus
  • Insights From Industry
  • Interviews
  • Mediknowledge
  • News
  • Thought Leaders
  • Whitepapers

More News

  • Study: Immunogenicity of a BNT162b2 Vaccine Booster Against SARS-CoV-2 Delta and Omicron Variants in Older People. Image Credit: Skylines / Shutterstock
    Study shows Pfizer-BioNTech booster protects over 65s against Delta and Omicron
  • Heart Attack 620x480
    New therapeutic approach for cardiac repair after a heart attack
  • Home
  • Privacy Policy
  • Contact
  • Disclaimer
  • Terms And Conditions

© 2022 Medical Finance - Latest Financial and Business News

No Result
View All Result
  • Interviews
  • Mediknowledge
  • News
  • Insights From Industry
  • Coronavirus
  • Thought Leaders
  • Whitepapers
wpDiscuz
0
0
Would love your thoughts, please comment.x
()
x
| Reply