Saturday, May 14, 2022
No Result
View All Result
Medical Finance
  • Home
  • News
  • Interviews
  • Mediknowledge
  • Insights From Industry
  • Thought Leaders
  • Coronavirus
  • Whitepapers
  • Home
  • News
  • Interviews
  • Mediknowledge
  • Insights From Industry
  • Thought Leaders
  • Coronavirus
  • Whitepapers
No Result
View All Result
Medical Finance
No Result
View All Result
Home Coronavirus

Exploring beta-coronavirus neutralization by vaccine-induced murine antibody WS6

by Medical Finance
in Coronavirus
Study: Vaccine-elicited murine antibody WS6 neutralizes diverse beta-coronaviruses by recognizing a helical stem supersite of vulnerability. Image Credit: Design_Cells/Shutterstock
9
SHARES
103
VIEWS
Share on FacebookShare on Twitter

In a recent study posted to the bioRxiv* preprint server, researchers evaluated the neutralizing antibody titers in mice vaccinated with messenger ribonucleic acid (mRNA) encoding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein.

Study: Vaccine-elicited murine antibody WS6 neutralizes diverse beta-coronaviruses by recognizing a helical stem supersite of vulnerability. Image Credit: Design_Cells/ShutterstockStudy: Vaccine-elicited murine antibody WS6 neutralizes diverse beta-coronaviruses by recognizing a helical stem supersite of vulnerability. Image Credit: Design_Cells/Shutterstock


Various beta-coronaviruses (beta-CoVs)-associated zoonotic infections, such as the Middle East respiratory syndrome (MERS), severe acute respiratory syndrome (SARS), and the ongoing coronavirus disease 2019 (COVID-19), have caused several pandemics and epidemics in recent years. Currently, approved COVID-19 vaccinations are becoming less effective due to their waning effect and the emergence of heavily mutated SARS-CoV-2 variants like Delta and Omicron.

Moreover, there is a potential threat of more betaCoVs-associated zoonotic infections in the future. Thus, universal vaccines and broadly neutralizing antibodies against a wide range of betaCoVs are required to mitigate pandemics such as the COVID-19 pandemic, especially as the SARS-CoV-2 Omicron variant evades natural and vaccine-induced immunity.

About the study

In the present study, the researchers analyzed the extent of neutralizing capacity of antibodies from SARS-CoV-2 S mRNA-immunized mice by evaluating the murine antibody’s epitope location, the magnitude of binding, and neutralization among diverse beta-CoV’s S.

By intramuscular immunization of mice with SARS-CoV-2 wildtype (WT) WA-1 variant S-encoding messenger ribonucleic acid (mRNA), SARS-CoV-2 S-specific antibodies were obtained. The antibodies bound to SARS-CoV-2 S-dTM, soluble S residues 1-1206 of WT WA-1 strain, were identified using enzyme-linked immunosorbent assay (ELISA). SARS-CoV-2-antibodies’ binding breadth was determined by assessing WS1-11 recognition on a panel of prefusion-stabilized diverse beta-coronavirus spikes (S2Ps).

WS6’s broad reactivity towards S2Ps of WIV1, hCoV-OC43, hCoV-229E, SHC014, and RaTG13, was also determined using ELISAs. Further, WS6 binding affinity towards betaCoV S2Ps and cell surface expressing the Ss of MERS-CoV, SARS-CoV, SARS-CoV-2, hCoV-OC43, and hCoV-HKU1 was determined using biolayer interferometry (BLI) and flow cytometry, respectively.

The broad betaCoVs neutralization of WS6 was determined using pseudovirus neutralization assays. The epitope mapping of WS6 was conducted using negative strain-electron microscopy (EM) and peptide array-based epitope mapping. The WS6 in complex with peptides based on SARS-CoV-2 S sequences’ crystal structure was analyzed at 2 Å of the antigen-binding fragment (Fab) to determine the mechanism associated with the broad reactivity of WS6 among betaCoVs.

Findings

The results indicated that 11 antibodies, including WS1 to WS11, bound SARS-CoV-2 S-dTM following SARS-CoV-2 S mRNA immunizations in mice. Of the 11 antibodies, nine bound with the SARS-CoV-2 S1 region, six with the N-terminal domain (NTD), and three with the receptor-binding domain (RBD). The WS5 and WS6 did not bind SARS-CoV-2 S1, NTD, or RBD.

Further, WS5 and WS6 showed a 10-fold reduction in binding towards SARS-CoV-2 compared to other immunogens, such as SARS-CoV, hCoV-HKU1, and MERS-CoV, whereas WS7, WS4, and WS3 had 1000 times lower affinity towards SARS-CoV-2. WS6 neutralized both SARS-CoV and SARS-CoV-2, whereas WS5 did not neutralize either of them.

The WS6 antibody neutralized all SARS-CoV, SARS-CoV-2 variants such as Omicron and Delta, and other related sarbecoviruses tested, except hCoV-229E.  During the epitope mapping and crystal structure analysis, WS6-S2 stem-helix epitope peptide crystal structure appeared conserved between MERS-CoV, hCoV-OC43, and SARS-CoV-2. The structural and neutralization analyses revealed that WS6 neutralized SARS-CoV-2 S by inhibiting its perfusion and post-viral attachment. To demonstrate the mechanism of neutralization of beta-coronaviruses by WS6, BHK21-ACE2 cells were incubated with SARS-CoV-2 S pseudotyped lentivirus on ice that allowed the virus to attach to angiotensin-converting enzyme 2 (ACE2).

After thorough washing, cells were again incubated with WS6 or WS4 on ice for one hour and at 37OC for 72 hours. RBD-directed WS4 neutralizing antibody neutralized not more than 40% of the virus, whereas WS6 seamlessly neutralized the ACE2 pre-attached virus.

A promising target for vaccine design, vulnerable stem-helical supersite on SARS-CoV-2 spanning over hydrophobic residues Tyr1155, Leu1152, Phe1156, and Phe1148, was identified in WS6 and other S-targeted antibodies such as IgG22, and B6 from SARS-CoV-2 S immunized mice, and CV3-25, CC40.8, and S2P6 from SARS-CoV-2-infected convalescent individuals.

The comparison of WS6 and S2P6 neutralization of various CoVs, including SARS-CoV-2, revealed that S2P6 did not neutralize the SARS-CoV-2 Omicron variant, whereas WS6 neutralized Omicron. Further, WS6 exhibited a more potent neutralization against all tested SARS-CoV-2 strains than S2P6, whereas WS6 was non-neutralizing against MERS-CoV.

The murine antibodies IgG22 and B6 recognized SARS-CoV-2 S almost similarly, given both were generated after MERS-CoV and SARS-CoV-2 S immunization, and utilized the VH1-19, heavy chain origin gene. In contrast, WS6 was generated only after the SARS-CoV-2 S immunization and did not utilize the same V-gene as the IgG22 and B6 antibodies.

Conclusions

In the current study, the researchers identified WS6, an S2-targeted antibody, from a mouse immunized with SARS-CoV-2 S encoded mRNA. WS6 neutralized all SARS-CoV-2 variants, including Omicron, and several other humans and animal-related sarbecoviruses analyzed in the study.

Most importantly, a highly promising vaccine target, a hydrophobic cluster spanning three helical turns with its center turn framed by acidic residues, was identified in the S2 subunit region of WS6. Comparison between recently identified S2-directed antibodies and WS6 identified a novel murine S2-helix recognition mode, and immunization with MERS-CoV S was not required to induce S2-targeted antibodies.

However, further studies are required to determine 1) whether S2-helix peptide-based immunizations can generate broadly neutralizing serological immune responses; 2) immune responses associated with nanoparticles loaded with S-2 helix; 3) S2-helix focused immunization-driven broad and potent immune responses against future SARS-CoV-2 strains or potential betaCoV zoonotic crossovers; and 4) the impact of S2-targeted immunizations in conjunction with current licensed S-based vaccines like Johnson and Johnson, Moderna, and Pfizer in generating immune responses.  

*Important notice

bioRxiv publishes preliminary scientific reports that are not peer-reviewed and, therefore, should not be regarded as conclusive, guide clinical practice/health-related behavior, or treated as established information.

Total
0
Shares
Share 0
Tweet 0
Pin it 0
Share 0
Medical Finance

Medical Finance

Related Posts

Study: Obesity associated with attenuated tissue immune cell responses in COVID-19. Image Credit: Eve Orea/Shutterstock

Attenuated tissue immune responses against SARS-CoV-2 in obese and non-obese patients

by Medical Finance
May 14, 2022
0

In a recent study posted to the bioRxiv* preprint server, researchers analyzed the lung and peripheral blood immune responses associated with...

Study: The Global case-fatality rate of COVID-19 has been declining disproportionately between top vaccinated countries and the rest of the world. Image Credit: Syda Productions/Shutterstock

Study suggests COVID-19 patient fatalities are decreasing unequally in vaccinated and unvaccinated countries

by Medical Finance
May 14, 2022
0

The coronavirus disease 2019 (COVID-19) pandemic has spread to nearly every country in the world and caused over 5.5 million...

Study: Vaccine Protection Against the SARS-CoV-2 Omicron Variant in Macaques. Image Credit: Fayeem/Shutterstock

Protective efficacy of BNT162b2 and Ad26.COV2.S against SARS-CoV-2 Omicron challenge in nonhuman primates

by Medical Finance
May 14, 2022
0

In a recent study posted to the bioRxiv* preprint server, researchers assessed coronavirus disease 2019 (COVID-19) vaccine-induced humoral and cellular...

Study: Booster vaccination to curtail COVID-19 resurgence - population-level implications of the Israeli campaign. Image Credit: Corona Borealis Studio/Shutterstock

Impact of SARS-CoV-2 booster vaccination on Delta variant resurgence in Israel

by Medical Finance
May 14, 2022
0

In a recent study posted to the medRxiv* preprint server, researchers explored the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)...

Study: Saliva-based SARS-CoV-2 serology using at-home collection kits returned via mail. Image Credit: Cryptographer/Shutterstock

Sensitivity and specificity of a “spit and mail” SARS-CoV-2 serology test

by Medical Finance
May 14, 2022
0

Saliva-based serology assays that measure antibodies against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) antigens are important coronavirus disease 2019...

Study: Olverembatinib inhibits SARS-CoV-2-Omicron variant-mediated cytokine release. Image Credit: WhiteDragon/Shutterstock

Scientists identify multi-kinase inhibitors that can effectively block SARS-CoV-2-mediated cytokine release

by Medical Finance
May 14, 2022
0

A new study has investigated the efficacy of two multi-kinase inhibitors, olverembatinib and ponatinib, in inhibiting severe acute respiratory syndrome...

Next Post
Omicron variant found to be much less sensitive to neutralizing antibodies than Delta

Omicron variant found to be much less sensitive to neutralizing antibodies than Delta

Small cluster of neurons in the brain stem found to coordinate vocalization with breathing

Small cluster of neurons in the brain stem found to coordinate vocalization with breathing

0 0 votes
Article Rating
Subscribe
Login
Notify of
guest
guest
0 Comments
Inline Feedbacks
View all comments

Support

  • Contact
  • Disclaimer
  • Home
  • Privacy Policy
  • Terms And Conditions

Categories

  • Coronavirus
  • Insights From Industry
  • Interviews
  • Mediknowledge
  • News
  • Thought Leaders
  • Whitepapers

More News

  • Study: Circulation of coronavirus in bats from northern and central Argentina: preliminary study. Image Credit: jekjob/Shutterstock
    Study explores coronavirus surveillance in bats from Argentina
  • Study: Limited Extent and Consequences of Pancreatic SARS-CoV-2 Infection. Image Credit: Andrea Danti/Shutterstock
    Study explores the impact of COVID-19 on pancreatic cells
  • Home
  • Privacy Policy
  • Contact
  • Disclaimer
  • Terms And Conditions

© 2022 Medical Finance - Latest Financial and Business News

No Result
View All Result
  • Interviews
  • Mediknowledge
  • News
  • Insights From Industry
  • Coronavirus
  • Thought Leaders
  • Whitepapers
wpDiscuz
0
0
Would love your thoughts, please comment.x
()
x
| Reply