Thursday, May 19, 2022
No Result
View All Result
Medical Finance
  • Home
  • News
  • Interviews
  • Mediknowledge
  • Insights From Industry
  • Thought Leaders
  • Coronavirus
  • Whitepapers
  • Home
  • News
  • Interviews
  • Mediknowledge
  • Insights From Industry
  • Thought Leaders
  • Coronavirus
  • Whitepapers
No Result
View All Result
Medical Finance
No Result
View All Result
Home News

Discovery of novel antibody that targets shared epitope on SARS-CoV-2 variants

by Medical Finance
in News
Study: Shared N417-dependent epitope on the SARS-CoV-2 Omicron, Beta and Delta-plus variants. Image Credit: NIAID
9
SHARES
100
VIEWS
Share on FacebookShare on Twitter

In a recent study posted to the medRxiv* preprint server, researchers assessed the antibody responses elicited by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and defined the epitopes shared by them.

Several SARS-CoV-2 variants of concern have emerged since the beginning of the coronavirus diseases 2019 (COVID-19) pandemic. These variants differ from each other in characteristics, including transmissibility and infectivity. Various studies have reported that mutations in the viral spike protein are responsible for these alterations. 

Study: Shared N417-dependent epitope on the SARS-CoV-2 Omicron, Beta and Delta-plus variants. Image Credit: NIAIDStudy: Shared N417-dependent epitope on the SARS-CoV-2 Omicron, Beta and Delta-plus variants. ​​​​​​​Image Credit: NIAID

About the study

In the present study, researchers compared the cross-reactivity exhibited by plasma responses during different SARS-CoV-2 waves dominated by SARS-CoV-2 D614G, Beta, and Delta variants.

The team obtained plasma samples from patients infected in the DG14G-dominant period prior to September 2020, the Beta-dominant wave between December 2020 and January 2021, and the Delta-dominant wave in July 2021. The samples were collected from HIV-uninfected individuals aged more than 18 years.

The researchers first compared the antibody responses observed in unvaccinated individuals infected by either the D614, Beta, or the Delta variants between May 2020 and July 2021. The team also explored the neutralization ability of plasma elicited by the three variants and SARS-CoV-1. Furthermore, the geometric mean titers (GMTs) were compared for the corresponding plasma responses elicited by the SARS-CoC-2 variants and SARS-CoV-1 to evaluate the extent and patterns of cross-reactivity against each variant.  

The team also assessed whether the antibodies to the N417K mutation in the Beta receptor-binding domain (RBD) were responsible for the plasma responses against the Beta variant. This was achieved by examining Beta-infected plasma samples and the Delta+ variant. Additionally, the team assessed the importance of N417 as a target of monoclonal antibody (mAb) responses elicited by Beta by isolating mAbs from a Beta-infected person who had displayed potent antibody responses towards Beta and cross-reactivity towards other variants. 

The team subsequently mapped the S protein target of the mAb by conducting binding experiments with SARS-CoV-2-specific enzyme-linked immunosorbent assay (ELISA). The ability of the mAbs to facilitate antibody-dependent cellular phagocytosis (ADCP) was also analyzed. Moreover, the ability of the mAbs to crosslink SARS-CoV-2 S proteins was evaluated.

Results

The study results showed that plasma elicited by the SARS-CoV-2 D614G variant generated potent autologous neutralization of the D614G spike (S) protein. However, D614G-elicited plasma also displayed a 12- to 15-fold reduction in neutralization towards the SARS-CoV-2 Beta and Delta variants as well as SARS-CoV-1. In contrast, the team also observed that the plasma from Beta-infected individuals showed a 2.9-fold reduced neutralization of the D614G variant, suggesting significant cross-reactivity. However, the Beta-elicited plasma showed lower cross-reactivity, which was reduced by 11.3-fold against Delta, 9.4-fold against Omicron, and 9.3-fold against SARS-CoV-1.

Comparison of plasma cross-reactivity elicited by three distinct SARS-CoV-2 variants. (A) Plasma from D614G, Beta and Delta infections during three distinct SARS-CoV-2 waves were tested for neutralization breadth against a range of VOCs using a pseudovirus-based neutralization assay. Fold changes in neutralization are shown above each variant. Plasma neutralization titer is measured as an ID50. Black horizontal bars represent geometric means. The threshold of detection for the neutralization assay is ID50>20. (B) Spider plots were derived from GMTs for plasma triggered by D614G, Beta or Delta against multiple VOCs. The GMTs for each plasma set was normalized against titers to the autologous virus and breadth was expressed as area under the curve. (C) Plasma from Beta-infected individuals was tested against the Delta and Delta+ variants. Fold changes in neutralization are shown above each variant. Plasma neutralization titer is measured as an ID50. Black horizontal bars represent geometric means. The threshold of detection for the neutralization assay is ID50>20.

Comparison of plasma cross-reactivity elicited by three distinct SARS-CoV-2 variants. (A) Plasma from D614G, Beta and Delta infections during three distinct SARS-CoV-2 waves were tested for neutralization breadth against a range of VOCs using a pseudovirus-based neutralization assay. Fold changes in neutralization are shown above each variant. Plasma neutralization titer is measured as an ID50. Black horizontal bars represent geometric means. The threshold of detection for the neutralization assay is ID50>20. (B) Spider plots were derived from GMTs for plasma triggered by D614G, Beta or Delta against multiple VOCs. The GMTs for each plasma set were normalized against titers to the autologous virus and breadth was expressed as area under the curve. (C) Plasma from Beta-infected individuals was tested against the Delta and Delta+ variants. Fold changes in neutralization are shown above each variant. Plasma neutralization titer is measured as an ID50. Black horizontal bars represent geometric means. The threshold of detection for the neutralization assay is ID50>20.

Notably, while the plasma in Delta-infected individuals had remarkably high autologous titers against the matched S protein, the team observed a 15- to 41-fold reduction in neutralization potency against the Delta, Beta, and Omicron variants and SARS-CoV-1. Also, a high level of cross-reactivity was found against the D614G variant in Delta-elicited samples. 

The team observed that each variant generated the highest plasma responses against their autologous S proteins. However, the degree of the autologous neutralization was different across different variants as Delta triggered the highest response, followed by Beta and D614G. Moreover, the plasma responses elicited by the Beta and the Delta variants were almost two times higher than those by the D614G variant. This indicated that the neutralization responses elicited by Beta and Delta were more cross-reactive as compared to those of D614G.

While Beta plasma had a 6.1-fold reduction in antibody responses against the Delta variant, a 2.5-fold decline in potency was observed against the Delta+ variant in the Beta samples. This highlights the significance of the N417 residue as a target of antibody responses elicited by the Beta variant. Furthermore, mAb obtained from Beta-infected individuals neutralized Beta and Delta+ pseudoviruses as well as the Omicron variant. However, these mAbs were not potent against the D614G, Delta, or the SARS-CoV-1 pseudoviruses.

The ELISA reported no detectable binding for either the D614G and Beta N-terminal domain (NTD) proteins; however, robust binding was found towards the Beta RBD. Notably, the mAb bound to the mutant K417N did not bind to the D614G subdomains. Altogether, this data indicated that mAb was substantially dependent on the N417 residue found in the Beta RBD.

Overall, the study findings showed that N417-dependent mAbs could serve as an excellent target to stimulate cross-reactive responses against SARS-CoV-2 variants. The researchers believe that the discovery of mAbs that target conserved viral sites will help develop therapeutic mAb combinations to treat SARS-CoV-2 infections, irrespective of the infecting variant.

*Important notice

medRxiv publishes preliminary scientific reports that are not peer-reviewed and, therefore, should not be regarded as conclusive, guide clinical practice/health-related behavior, or treated as established information.

Journal reference:

  • Shared N417-dependent epitope on the SARS-CoV-2 Omicron, Beta and Delta-plus variants, Thandeka Moyo-Gwete, Mashudu Madzivhandila, Nonhlanhla N Mkhize, Prudence Kgagudi, Frances Ayres, Bronwen E Lambson, Nelia P Manamela, Simone I Richardson, Zanele Makhado, Mieke van der Mescht, Zelda de Beer, Talita Roma de Villiers, Wendy A Burgers, Ntobeko AB Ntusi, Theresa Rossouw, Veronica Ueckermann, Michael T Boswell, Penny L Moore, medRxiv 2022.04.24.22273395, DOI: https://doi.org/10.1101/2022.04.24.22273395, https://www.medrxiv.org/content/10.1101/2022.04.24.22273395v1
Total
0
Shares
Share 0
Tweet 0
Pin it 0
Share 0
Medical Finance

Medical Finance

Related Posts

New mathematical model can calculate the risk of resistance evolution for drug pairs

Genomic surveillance of bacterial colonies could help physicians keep closer tabs on drug resistance

by Medical Finance
May 19, 2022
0

Antibiotic-resistant bacterial infections are difficult to treat and cause more than a million annual deaths worldwide, especially in hospitalized patients...

Scientists unravel how blood cells mount the first line of defense against viruses

Researchers solve the structure of large signaling protein involved in emergence of blood cancers

by Medical Finance
May 19, 2022
0

Researchers led by Christopher Garcia of the Ludwig Center at Stanford University have solved the long-sought structure of a large...

Scientists unravel how blood cells mount the first line of defense against viruses

Scientists identify a new protein that turbocharges gene expression

by Medical Finance
May 19, 2022
0

For many years, scientists have sought to understand what happens when our genes are flipped to the "on" position. Now,...

Study: Intragenomic rearrangements of SARS-CoV-2 and other β-coronaviruses. Image Credit: NIAID

Intragenomic rearrangements help explain how SARS-CoV-2 variants arise

by Medical Finance
May 19, 2022
0

In a recent study posted to the bioRxiv* preprint server, researchers presented the intragenomic rearrangements of β-coronaviruses (CoVs), including severe acute...

What are the benefits of Irish Life Sciences’ new 2.2 mL square well ‘V’ bottom plate?

Merck and Waters to Collaborate on Extractables and Leachables Reference Library

by Medical Finance
May 19, 2022
0

Library will enable analytical labs to identify potential E&L compounds in their samples using instruments from Waters and confirm...

Study: From dogs to bats: Concerns regarding vampire bat-borne rabies in Brazil. Image Credit: Nuwat Phansuwan/Shutterstock

Rabies transmission via vampire bats identified in Brazil

by Medical Finance
May 19, 2022
0

In a recent study published in the journal PLOS Neglected Tropical Diseases, researchers evaluated the concerns regarding the hematophagous bat-borne rabies in...

Next Post
Dog brains can detect speech and show different activity patterns to many languages

New drug inhibits growth of the most aggressive meningiomas

Study: BNT162b2 post-exposure-prophylaxis against COVID-19. Image Credit: Rido/Shutterstock

Impact of post-exposure BNT162b2 prophylaxis against SARS-CoV-2 infections

0 0 votes
Article Rating
Subscribe
Login
Notify of
guest
guest
0 Comments
Inline Feedbacks
View all comments

Support

  • Contact
  • Disclaimer
  • Home
  • Privacy Policy
  • Terms And Conditions

Categories

  • Coronavirus
  • Insights From Industry
  • Interviews
  • Mediknowledge
  • News
  • Thought Leaders
  • Whitepapers

More News

  • Study: SARS-CoV-2 variants do not evolve to promote further escape from MHC-I recognition. Image Credit: NIAID
    SARS-CoV-2 variants are not evolving to escape from T cell-mediated immunity
  • Study: Prescribing Nirmatrelvir–Ritonavir: How to Recognize and Manage Drug–Drug Interactions. Image Credit: Artur Wnorowski/Shutterstock
    Identifying and managing drug-drug interactions key to the safe use of nirmatrelvir–ritonavir in COVID-19 treatment
  • Home
  • Privacy Policy
  • Contact
  • Disclaimer
  • Terms And Conditions

© 2022 Medical Finance - Latest Financial and Business News

No Result
View All Result
  • Interviews
  • Mediknowledge
  • News
  • Insights From Industry
  • Coronavirus
  • Thought Leaders
  • Whitepapers
wpDiscuz
0
0
Would love your thoughts, please comment.x
()
x
| Reply