Sunday, May 29, 2022
No Result
View All Result
Medical Finance
  • Home
  • News
  • Interviews
  • Mediknowledge
  • Insights From Industry
  • Thought Leaders
  • Coronavirus
  • Whitepapers
  • Home
  • News
  • Interviews
  • Mediknowledge
  • Insights From Industry
  • Thought Leaders
  • Coronavirus
  • Whitepapers
No Result
View All Result
Medical Finance
No Result
View All Result
Home News

Cellular reprogramming can lead to better liver tissue regeneration in mice

by Medical Finance
in News
Blood proteoforms may help predict liver transplant rejection
9
SHARES
101
VIEWS
Share on FacebookShare on Twitter

Mammals can’t typically regenerate organs as efficiently as other vertebrates, such as fish and lizards. Now, Salk scientists have found a way to partially reset liver cells to more youthful states-;allowing them to heal damaged tissue at a faster rate than previously observed. The results, published in Cell Reports on April 26, 2022, reveal that the use of reprogramming molecules can improve cell growth, leading to better liver tissue regeneration in mice.

“We are excited to make strides at repairing cells of damaged livers because, someday, approaches like this could be extended to replacing the whole organ itself,” says corresponding author Juan Carlos Izpisua Belmonte, a professor in Salk’s Gene Expression Laboratory and holder of the Roger Guillemin Chair. “Our findings could lead to the development of new therapies for infection, cancer and genetic liver diseases as well as metabolic diseases like nonalcoholic steatohepatitis (NASH).”

The authors previously showed how four cellular reprogramming molecules-;Oct-3/4, Sox2, Klf4 and c-Myc, also called “Yamanaka factors”-;can slow down the aging process as well as improve muscle tissue regeneration capacity in mice. In their latest study, the authors used Yamanaka factors to see if they could increase liver size and improve liver function while extending the health span of the mice. The process involves partially converting mature liver cells back to “younger” states, which promotes cell growth.

“Unlike most of our other organs, the liver is more effective at repairing damaged tissue,” says co-first author Mako Yamamoto, a staff researcher in the Izpisua Belmonte lab. “To find out if mammalian tissue regeneration could be enhanced, we tested the efficacy of Yamanaka factors in a mouse liver model.”

The issue many researchers in the field face is how to control the expression of factors needed for improving cell function and rejuvenation as some of these molecules can cause rampant cell growth, such as occurs in cancer. To circumvent this, Izpisua Belmonte’s team used a short-term Yamanaka factor protocol, where the mice had their treatment administered for only one day. The team then tracked the activity of the partially reprogrammed liver cells by taking periodic samples and closely monitoring how cells divided over several generations. Even after nine months––roughly a third of the animal’s life span–– none of the mice had tumors.

“Yamanaka factors are truly a double-edged sword,” says co-first author Tomoaki Hishida, a former postdoctoral fellow in the Izpisua Belmonte lab and current associate professor at Wakayama Medical University in Japan. “On the one hand, they have the potential to enhance liver regeneration in damaged tissue, but the downside is that they can cause tumors. We were excited to find that our short-term induction protocol has the good effects without the bad-;improved regeneration and no cancer.”

The scientists made a second discovery while studying this reprogramming mechanism in a lab dish: A gene called Top2a is involved in liver cell reprogramming and is highly active one day after short-term Yamanaka factor treatment. Top2a encodes Topoisomerase 2a, an enzyme that helps break up and rejoin DNA strands. When the researchers blocked the gene, which lowered Topoisomerase 2a levels, they saw a 40-fold reduction in cellular reprogramming rates, leading to far fewer young cells. The exact role that Top2a plays in this process remains a future area of research.

There is still much work to be done before we can fully understand the molecular basis underlying cellular rejuvenation programming approaches. This is a necessary requirement for developing effective and universal medical treatments and reversing the effects of human disease.”


Juan Carlos Izpisua Belmonte, Professor in Salk’s Gene Expression Laboratory

Source:

Journal reference:

Hishida, T., et al. (2022) In vivo partial cellular reprogramming enhances liver plasticity and regeneration. Cell Reports. doi.org/10.1016/j.celrep.2022.110730.

Total
0
Shares
Share 0
Tweet 0
Pin it 0
Share 0
Medical Finance

Medical Finance

Related Posts

First patient-derived stem cell model developed for studying oculocutaneous albinism

New training scheme for convolutional neural networks automates cell segmentation and counting

by Medical Finance
May 29, 2022
0

The use of machine learning to perform blood cell counts for diagnosis of disease instead of expensive and often less...

Scientists identify a new switch for controlling motor proteins

Scientists discover how immune proteins defend plants against invading microorganisms

by Medical Finance
May 29, 2022
0

Scientists from the Max Planck Institute for Plant Breeding Research (MPIPZ) and the University of Cologne, Germany, have discovered a...

AI-driven solution predicts RNA and DNA binding sites to accelerate rational drug discovery

Applying a form of AI to sift through large amounts of biological data

by Medical Finance
May 29, 2022
0

Researchers at the University of Missouri are applying a form of artificial intelligence (AI) -; previously used to analyze how...

Round bottom storage microplate offers maximum sample recovery

Round bottom storage microplate offers maximum sample recovery

by Medical Finance
May 29, 2022
0

Porvair Sciences has added a new 1.2 ml Deep Well microplate, with round well bottoms for maximum sample recovery, to its family...

RNA-chopping enzyme Dicer stabilizes mammalian chromosomes with the help of BRD4 activator

Mitosis in moss plants could be far more similar to animal cell division than previously thought

by Medical Finance
May 29, 2022
0

For a new plant to grow from a seed, cells need to divide numerous times. Daughter cells can each take...

Balanced pollen diet reduces the negative effects of parasitic infestation for bumblebees

Balanced pollen diet reduces the negative effects of parasitic infestation for bumblebees

by Medical Finance
May 29, 2022
0

Bumblebees are important pollinators because they pollinate many different plant species and are extremely resilient. They can still manage to...

Next Post
New tool could help detect geographical hotspots for mental health problems caused by COVID

Blood groups play a key role in whether people develop severe COVID-19, study suggests

Macrophages in the arteries can “sniff” out their surroundings and cause inflammation

Lipidomic profiling may provide early prediction of type 2 diabetes and cardiovascular disease risk

0 0 votes
Article Rating
Subscribe
Login
Notify of
guest
guest
0 Comments
Inline Feedbacks
View all comments

Support

  • Contact
  • Disclaimer
  • Home
  • Privacy Policy
  • Terms And Conditions

Categories

  • Coronavirus
  • Insights From Industry
  • Interviews
  • Mediknowledge
  • News
  • Thought Leaders
  • Whitepapers

More News

  • Study: A Suite of TMPRSS2 Assays for Screening Drug Repurposing Candidates as Potential Treatments of COVID-19. Image Credit: Wirestock Creators/Shutterstock
    Screening assays identify TMPRSS2 inhibitors from drug repurposing candidates useful as COVID-19 therapeutic
  • Potatoes with peel isolated on white background Domnitsky 0ac06561439540adb685089bd0bad202 620x480
    Microbes in animals’ guts influence diet selection behavior, research shows
  • Home
  • Privacy Policy
  • Contact
  • Disclaimer
  • Terms And Conditions

© 2022 Medical Finance - Latest Financial and Business News

No Result
View All Result
  • Interviews
  • Mediknowledge
  • News
  • Insights From Industry
  • Coronavirus
  • Thought Leaders
  • Whitepapers
wpDiscuz
0
0
Would love your thoughts, please comment.x
()
x
| Reply