Saturday, June 25, 2022
No Result
View All Result
Medical Finance
  • Home
  • News
  • Interviews
  • Mediknowledge
  • Insights From Industry
  • Thought Leaders
  • Coronavirus
  • Whitepapers
  • Home
  • News
  • Interviews
  • Mediknowledge
  • Insights From Industry
  • Thought Leaders
  • Coronavirus
  • Whitepapers
No Result
View All Result
Medical Finance
No Result
View All Result
Home News

Brain area communication changes over much faster timescales than previously thought

by Medical Finance
in News
Dog brains can detect speech and show different activity patterns to many languages
9
SHARES
100
VIEWS
Share on FacebookShare on Twitter

Understanding how brain areas communicate is one of the oldest questions in neuroscience. Researchers at the Sainsbury Wellcome Centre at UCL used causal techniques to uncover how two neocortical areas in the brain communicate with one another and found that their influence on each other changes over much faster-timescales than previously thought.

With around 80 billion neurons and 100 trillion connections in the brain, it has been challenging for neuroscientists to untangle the networks that give rise to behavior. In a new study, published today in Neuron, SWC researchers elucidate how two visual areas in the cerebral cortex, the primary visual cortex (V1) and lateromedial area (LM), influence one another and how this communication changes over rapid timespans.

We wanted to study the communication between areas to understand how different brain regions work together to process visual stimuli. From classical studies, we know that there is a hierarchy of visual areas with feedforward and feedback pathways. The first level of hierarchy in the cerebral cortex is V1 and the second level is V2 in primates, the equivalent of which is LM in mice.”


Mitra Javadzadeh, Research Fellow at SWC and co-author on the paper

“Our expectation from the anatomical connections between V1 and LM is that the effect of neuronal activity in one area on another would be relatively constant; however, we were surprised to find it is dynamic and changes over time. These changes can happen very rapidly, within tens of milliseconds,” said Sonja Hofer, Group Leader at SWC and co-author on the paper.

Historically, scientists have recorded from different brain areas and used statistical correlations to infer how one area influences another. In this study, Javadzadeh and Hofer instead took a causal approach by using neuronal perturbations to study the dynamics of inter-areal interactions over time.

The neuroscientists recorded from populations of neurons in V1 and LM in mice and used optogenetics to briefly silence the activity of one area and quantify how the activity increased or decreased in the other area. This showed them the contribution of the first area in shaping the firing rates of the second area.

Javadzadeh and Hofer measured these contributions over time while these brain areas were processing visual information. Surprisingly, they found that the effect of manipulating one area on the activity in another varied over time on a fast timescale. For example, a neuron in area V1 could decrease its activity in response to area LM at one time point but not be influenced by LM activity 100 milliseconds later. Furthermore, if the visual stimulus was behaviorally relevant for the animal, for example if it was predicting the occurrence of a reward, then these changes in influence occurred even faster.

The function of these rapidly changing influences is not yet known, but the authors hypothesize that they may allow cortical areas to control different aspects of processing in the downstream brain regions they influence over very short time spans. This would mean that the role individual areas play in shaping each other’s activity could be flexible and tailored to the dynamic demands of behavior.

In addition to exploring the function of these dynamic interactions, Javadzadeh and Hofer are working together with scientists at the Gatsby Computational Neuroscience Unit, located within the same building as SWC, to understand the mechanisms by which they come about.

This research was funded by the Sainsbury Wellcome Centre Core Grant from the Gatsby Charity Foundation and Wellcome (090843/F/09/Z), by an ERC Starting Grant (SBH, HigherVision 337797) and by Biozentrum, University of Basel core funds.

Source:

Sainsbury Wellcome Centre

Journal reference:

Javadzadeh, M & Hofer, S.B., (2022) Dynamic causal communication channels between neocortical areas. Neuron. doi.org/10.1016/j.neuron.2022.05.011.

Total
0
Shares
Share 0
Tweet 0
Pin it 0
Share 0
Medical Finance

Medical Finance

Related Posts

UC San Diego scientists report on the molecular impact of life indoors

UC San Diego scientists report on the molecular impact of life indoors

by Medical Finance
June 24, 2022
0

Within and upon every human being reside countless microorganisms -; the microbiota that help shape and direct the lives of...

Researchers create artificial cell membrane that can be kept stable for over 50 days

Inhibiting pore formation in cells may facilitate prevention, treatment of NASH-associated liver cancer

by Medical Finance
June 24, 2022
0

Need another reason to think twice before ordering that extra helping of fries? It could lead to a higher risk...

New evidence supports the link between growth-induced respiratory stress and fish reproduction

Researchers identify orally efficacious antiviral drug against respiratory syncytial virus

by Medical Finance
June 24, 2022
0

An oral antiviral drug that targets a key part of the respiratory syncytial virus (RSV) polymerase and inhibits the synthesis...

New cryo-EM method may be able to shortcut a big step in modern vaccine development

New study holds promise to help plants defend themselves against viruses

by Medical Finance
June 24, 2022
0

New research, led by Washington State University scientists, into how viral proteins interact and can be disabled holds promise to...

Certain flavonoids inhibit an enzyme involved in the formation of key hormone in yellow fever mosquito

Certain flavonoids inhibit an enzyme involved in the formation of key hormone in yellow fever mosquito

by Medical Finance
June 24, 2022
0

When most people think of flavonoids, natural compounds found in plants and other organisms, their nutritional benefits probably come to...

‘Lefty’ protein pumps the brakes during initial stages of embryo differentiation

‘Lefty’ protein pumps the brakes during initial stages of embryo differentiation

by Medical Finance
June 24, 2022
0

A protein known as Lefty pumps the brakes as human embryos begin to differentiate into the bones, soft tissues and...

Next Post
Study identifies 10 new genetic regions linked with Brugada syndrome

Study identifies 10 new genetic regions linked with Brugada syndrome

Slight pH adjustment may turn a metabolic inhibiting drug into promising COVID-19 treatment

Slight pH adjustment may turn a metabolic inhibiting drug into promising COVID-19 treatment

0 0 votes
Article Rating
Subscribe
Login
Notify of
guest
guest
0 Comments
Inline Feedbacks
View all comments

Support

  • Contact
  • Disclaimer
  • Home
  • Privacy Policy
  • Terms And Conditions

Categories

  • Coronavirus
  • Insights From Industry
  • Interviews
  • Mediknowledge
  • News
  • Thought Leaders
  • Whitepapers

More News

  • Study: Rapid, high throughput, automated detection of SARS-CoV-2 neutralizing antibodies against native-like vaccine and delta variant spike trimers. Image Credit: anyaivanova / Shutterstock.com
    Novel, rapid and efficient assay for SARS-CoV-2 neutralizing antibodies
  • Study: Using Survey Data to Estimate the Impact of the Omicron Variant on Vaccine Efficacy against COVID-19 Infection. Image Credit: G.Tbov/Shutterstock
    Scientists find reduced vaccine efficacy against Omicron in South Africa and 50 other countries
  • Home
  • Privacy Policy
  • Contact
  • Disclaimer
  • Terms And Conditions

© 2022 Medical Finance - Latest Financial and Business News

No Result
View All Result
  • Interviews
  • Mediknowledge
  • News
  • Insights From Industry
  • Coronavirus
  • Thought Leaders
  • Whitepapers
wpDiscuz
0
0
Would love your thoughts, please comment.x
()
x
| Reply