Thursday, May 19, 2022
No Result
View All Result
Medical Finance
  • Home
  • News
  • Interviews
  • Mediknowledge
  • Insights From Industry
  • Thought Leaders
  • Coronavirus
  • Whitepapers
  • Home
  • News
  • Interviews
  • Mediknowledge
  • Insights From Industry
  • Thought Leaders
  • Coronavirus
  • Whitepapers
No Result
View All Result
Medical Finance
No Result
View All Result
Home Coronavirus

A novel mouse model to test SARS-CoV-2 viral infection

by Medical Finance
in Coronavirus
Study: Development of a Novel Human CD147 Knock-in NSG Mouse Model to Test SARS-CoV-2 Viral Infection. Image Credit: Design_Cells / Shutterstock
9
SHARES
99
VIEWS
Share on FacebookShare on Twitter

In a recent study posted to the Research Square* preprint server, researchers developed a novel mouse model for testing infection by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2).

The coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has been an unprecedented crisis over the past two years, devastating the lives of millions of people. SARS-CoV-2 invades the host cell by attaching to the angiotensin-converting enzyme-2 (ACE2), which acts as the primary functional receptor for cell entry for SARS-CoV-2 and SARS-CoV.

Lately, studies have reported that the cluster of differentiation 147 (CD147), also known as basigin (BSG), could be an additional receptor for SARS-CoV-2. While the mechanism of SARS-CoV-2 interaction with CD147 is debated in the scientific community, it is thought that CD147 could still have a potential role in the clinical course of COVID-19, even if it is not a functional entry receptor.

Study: Development of a Novel Human CD147 Knock-in NSG Mouse Model to Test SARS-CoV-2 Viral Infection. Image Credit: Design_Cells / ShutterstockStudy: Development of a Novel Human CD147 Knock-in NSG Mouse Model to Test SARS-CoV-2 Viral Infection. Image Credit: Design_Cells / Shutterstock

The study and findings

In the present study, researchers knocked in a humanized CD147 (hCD147KI) in the NOD-SCID-IL2Rγnull (NSG) mouse model, which lacks functional natural killer (NK) cells, B and T lymphocytes.

The human CD147-encoding complementary deoxyribonucleic acid (cDNA) was knocked-in targeting the exon 1 of mouse CD147 on chromosome 10 under the control of the endogenous Cd147 gene. The resultant knock-in created a fusion protein that contained 22 amino acids of the mouse CD147 signal peptide and the remaining 23-385 amino acids of the human CD147. Transcription termination was mediated by a bovine growth hormone polyadenylation signal sequence.

Embryos of NSG mice were targeted by injecting the target vector and CRISPR-associated protein 9 (Cas9) complexed with a clustered regularly interspaced short palindromic repeats (CRISPR) single-guide RNA (sgRNA) for cleaving the target sequence. They found fertile female mice that transmitted the knocked-in allele to offspring, while hCD174KIhet-NSG males were less fertile and precluded the generation of hCD174KIhomo-NSG mice. Therefore, hCD174KIhet-NSG mice were further evaluated. A similar model for human ACE2 (hACE2) was generated downstream of the mouse Ace2 gene. The 5’ untranslated region (UTR) and first 15 amino acids of mouse Ace2 were retained, and the rest of the sequence was replaced with hACE2 cDNA. Cas9-sgRNA and the plasmid vector were injected into NSG embryos.

Diagram of proposed working hypothesis of CD147 in SARS-CoV-2 Infection. (1) SARS-CoV-2 virions infect human cells via the canonical pathway where host Angiotensin-converting Enzyme 2 (ACE2) receptors bind to viral spike proteins (red) and facilitate viral entry and infection. (2) CD147 proteins, via binding to surface binding partners (e.g., E-selectin), facilitate cell-cell adhesion, membrane fusion, and intercellular transfer of SARS-CoV-2 virions. (3) Erythrocytes and platelets which strongly express CD147, bind SARS-CoV-2 virions, and increase thrombosis risk and other clinical manifestations of COVID-19.

Diagram of proposed working hypothesis of CD147 in SARS-CoV-2 Infection. (1) SARS-CoV-2 virions infect human cells via the canonical pathway where host Angiotensin-converting Enzyme 2 (ACE2) receptors bind to viral spike proteins (red) and facilitate viral entry and infection. (2) CD147 proteins, via binding to surface binding partners (e.g., E-selectin), facilitate cell-cell adhesion, membrane fusion, and intercellular transfer of SARS-CoV-2 virions. (3) Erythrocytes and platelets which strongly express CD147, bind SARS-CoV-2 virions, and increase thrombosis risk and other clinical manifestations of COVID-19.

Organs from adult hCD174KIhet-NSG and wild-type NSG littermates were harvested and stained for hCD147 by immunohistochemistry. Robust and specific hCD147 expression was noted in several tissues in knock-in mice compared to wild-type. Moreover, in some tissues, the expression of hCD147 in knock-in mice was similar to mouse CD147 in wild-type mice. The hCD147 knock-in mice were infected with SARS-CoV-2, and in parallel, hACE2KIhomo-NSG mice were also inoculated with the virus. The hACE2KIhomo-NSG mice had ruffled fur and displayed significant weight loss relative to wild-type NSG mice indicating the success of establishing a physiologically expressing knock-in NSG mouse. The hCD174KIhet-NSG mice exhibited a similar trend attaining significance at day 4 post-infection. However, whereas hCD174KIhet-NSG mice substantially regained weight to initial levels by day 7, hACE2KIhomo-NSG showed no such recovery from weight loss.

Lungs were harvested from each mouse seven days after infection for further molecular and immunohistochemical analysis. A 100,000-fold increase in the SARS-CoV-2 nucleocapsid (N) RNA levels was observed in hACE2KI-NSG mice compared to wild-type NSG mice. In addition, a 65-fold increase in viral RNA was noted in hCD147-NSG mice relative to wild-type mice, supporting that CD147 might have an ancillary role in COVID-19.

Moreover, slightly higher viral RNA levels were detected in hCD147KI-NSG mice (relative to wild-type) when euthanized two days post-infection. The single-molecule in situ hybridization (sm-FISH) staining on fixed lung tissues from each NSG line revealed infection sites in both hCD147KI- and hACE2KI-NSG mice, whereas wild-type NSG mice lacked infection sites.

Furthermore, the researchers found the SARS-CoV-2 spike protein’s receptor-binding domain (RBD) localized in the bronchiolar epithelial cells across all infected lines by immunofluorescence and immunohistochemistry. Overall, the hACE2KI-NSG mice had significantly higher mean fluorescence intensity relative to wild-type NSG mice, whereas no differences were found between hCD147KI-NSG mice and wild-type controls.  

Conclusions

Two novel mouse models expressing hACE2 or hCD147 were successfully developed and validated in NSG mice—the knock-in mice utilized endogenous Bsg and Ace2 promoters in hCD147KI- and hACE2KI-NSG lines, respectively. The authors noted that the knock-in NSG lines were more susceptible to SARS-CoV-2 than wild-type NSG mice.

The study’s findings support that hCD147 might play an ancillary role in COVID-19 infection. The apparent lack of elucidation of the mechanism by which CD147 facilitates SARS-CoV-2 entry or replication needs to be noted; future studies might be able to address the limitations.

*Important notice

Research Square publishes preliminary scientific reports that are not peer-reviewed and, therefore, should not be regarded as conclusive, guide clinical practice/health-related behavior, or treated as established information.

Total
0
Shares
Share 0
Tweet 0
Pin it 0
Share 0
Medical Finance

Medical Finance

Related Posts

Small cluster of neurons in the brain stem found to coordinate vocalization with breathing

Over a third vaccinated-but-unboosted adults have reservations about vaccinating children

by Medical Finance
May 19, 2022
0

While the vast majority of U.S. adults who are fully vaccinated and boosted against Covid-19 would be likely to recommend...

Study: Would New SARS-CoV-2 Variants Change the War against COVID-19? Image Credit: eamesBot/Shutterstock

reinfection, vaccines, and herd immunity

by Medical Finance
May 19, 2022
0

Different technological platforms are being used to protect against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) – the causative pathogen...

The prevalence of SARS-CoV-2 in environment and animal samples from the Huanan seafood market

The prevalence of SARS-CoV-2 in environment and animal samples from the Huanan seafood market

by Medical Finance
May 19, 2022
0

Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of the ongoing coronavirus disease 2019 (COVID-19)...

Study: SARS-CoV-2 infection in technology-dependent children: a multicenter case series. Image Credit: Jsnow my world / Shutterstock

Research looks at children hospitalized with SARS-CoV-2 who depend on medical technology

by Medical Finance
May 19, 2022
0

In a recent study posted to the Research Square* preprint server, researchers described coronavirus disease 2019 (COVID-19) infection in technology-dependent...

Study: Promising efficacy of following a third dose of mRNA SARS-CoV-2 vaccination in patients treated with anti-CD20 antibody who failed 2-dose vaccination. Image Credit: No-Mad/Shutterstock

Evaluating a third SARS-CoV-2 mRNA vaccine in anti-CD20-treated patients

by Medical Finance
May 19, 2022
0

In a recent study posted to the medRxiv* preprint server, researchers assessed the efficacy of a third dose of coronavirus...

Study: SARS-CoV-2 and human retroelements: a case for molecular mimicry? Image Credit: ThSucho/Shutterstock

Similarities between SARS-CoV-2 and human retroelements explored

by Medical Finance
May 19, 2022
0

A recent study posted to the Research Square* pre-print server, and currently under consideration at BMC Genomic Data, investigated the similarities between...

Next Post
Scientists unravel how blood cells mount the first line of defense against viruses

Genome research explains why oats could be suitable for most people with celiac disease

Swapping single food item for a more planet-friendly alternative could reduce diet’s carbon footprint

First large-scale estimate of live microbes consumed by Americans daily

0 0 votes
Article Rating
Subscribe
Login
Notify of
guest
guest
0 Comments
Inline Feedbacks
View all comments

Support

  • Contact
  • Disclaimer
  • Home
  • Privacy Policy
  • Terms And Conditions

Categories

  • Coronavirus
  • Insights From Industry
  • Interviews
  • Mediknowledge
  • News
  • Thought Leaders
  • Whitepapers

More News

  • Study: The Effectiveness of mRNA Vaccine Boosters for Laboratory-Confirmed COVID-19 During a Period of Predominance of the Omicron Variant of SARS-CoV-2. Image Credit: chatuphot/Shutterstock
    Study explores efficacy of mRNA vaccine booster doses during the SARS-CoV-2 Omicron wave
  • Study: Salvia miltiorrhiza Bunge as a Potential Natural Compound against COVID-19. Image Credit: HelloRF Zcool/Shutterstock
    The preclinical potential of a herb used in traditional Chinese medicine for the treatment of COVID-19
  • Home
  • Privacy Policy
  • Contact
  • Disclaimer
  • Terms And Conditions

© 2022 Medical Finance - Latest Financial and Business News

No Result
View All Result
  • Interviews
  • Mediknowledge
  • News
  • Insights From Industry
  • Coronavirus
  • Thought Leaders
  • Whitepapers
wpDiscuz
0
0
Would love your thoughts, please comment.x
()
x
| Reply