Tuesday, July 5, 2022
No Result
View All Result
Medical Finance
  • Home
  • News
  • Interviews
  • Mediknowledge
  • Insights From Industry
  • Thought Leaders
  • Coronavirus
  • Whitepapers
  • Home
  • News
  • Interviews
  • Mediknowledge
  • Insights From Industry
  • Thought Leaders
  • Coronavirus
  • Whitepapers
No Result
View All Result
Medical Finance
No Result
View All Result
Home Coronavirus

A common cold may boost the immune system against COVID-19

by Medical Finance
in Coronavirus
Study: Cross-reactive memory T cells associate with protection against SARS-CoV-2 infection in COVID-19 contacts. Image Credit: Pormezz / Shutterstock
9
SHARES
101
VIEWS
Share on FacebookShare on Twitter

A recent groundbreaking research paper published in the journal Nature Communications reveals the association of circulating SARS-CoV-2-specific T cells at exposure with lack of infection – implying the protective role for cross-reactive immune T cells in coronavirus disease 2019 (COVID-19) and opening the door for second-generation vaccines that could circumvent spike-antibody immune escape variants.

Study: Cross-reactive memory T cells associate with protection against SARS-CoV-2 infection in COVID-19 contacts. Image Credit: Pormezz / Shutterstock

Study: Cross-reactive memory T cells associate with protection against SARS-CoV-2 infection in COVID-19 contacts. Image Credit: Pormezz / Shutterstock

Despite all the efforts to distribute effective vaccines against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we are still not entirely certain about the exact correlates of protection. Moreover, exposure to this virus does not necessarily result in infection, as pre-existing T cells (primed by endemic circulating human coronaviruses might mediate protection in individuals that were never infected with the virus.

And indeed, the prevalence of such pre-existing cross-reactive T cells has often been touted as a pivotal factor that can mediate the outcome after exposure to SARS-CoV-2. However, the exact evidence of whether these T cells can provide a desired protective effect has been elusive.

Some scientific reports have proposed that SARS-CoV-2 infection may actually induce T cells without prompting the production of antibodies, but such a scenario is highly unlikely; a much more realistic scenario is the expansion of pre-existing T cells from prior exposure to human coronaviruses.

In this new study, first-authored by Dr. Rhia Kundu from the Imperial College London in the United Kingdom, a total of 52 household contacts of newly diagnosed COVID-19 cases were appraised in order to capture the earliest time-points after SARS-CoV-2 exposure when analyzing host response in depth.

Enumerating cells and appraising cytokines

Researchers in this paper have quantified T cells specific for in silico-predicted and biologically confirmed pools of cross-reactive epitopes from five SARS-CoV-2 proteins, alongside specific spanning peptide pools representing the whole protein.

This was done with the use of a highly sensitive dual cytokine fluorescence-linked immunospot (FLISpot) assay on peripheral blood mononuclear cells (that were cryopreserved before using this method) for detecting both interferon-gamma and interleukin-2 (IL-2).

More specifically, the frequency of T cells specific to spike glycoprotein, nucleocapsid, envelope, membrane, and open reading frame 1 (ORF1) SARS-CoV-2 epitopes that cross-react with human endemic coronaviruses have been enumerated.

Available sequences for S, M, E, N and ORF1 from SARS-CoV-2, huCoV-OC43 and huCoV-HKU1 were assessed for potential HLA-binding motifs by SYFPEITHI and IEDB as described in the Methods. The number of predicted epitopes is presented in the stacked bar charts and the immunogenicity for each protein of each virus is depicted as points on the right Y-axis. Green bars and circles depict huCoV-HKU1 (HKU1), red huCoV-OC43 (OC43) and blue SARS-CoV-2 (SARS2) (a). The predicted cross-reactive epitopes and their prevalence within each virus for all sequences available are mapped as red histograms in a linear plot for ORF1 and a radial plot for S, M, E, and N. All mapped cross-reactive epitopes within ORF1 were present across SARS-CoV-2, HKU1, and OC43. Within the radial plot, the yellow track represents the SARS-CoV-2 sequence, dark blue HKU1 and light blue OC43, with red histograms representing the prevalence of the putative epitope across the viruses (b).Available sequences for S, M, E, N and ORF1 from SARS-CoV-2, huCoV-OC43 and huCoV-HKU1 were assessed for potential HLA-binding motifs by SYFPEITHI and IEDB as described in the Methods. The number of predicted epitopes is presented in the stacked bar charts and the immunogenicity for each protein of each virus is depicted as points on the right Y-axis. Green bars and circles depict huCoV-HKU1 (HKU1), red huCoV-OC43 (OC43) and blue SARS-CoV-2 (SARS2) (a). The predicted cross-reactive epitopes and their prevalence within each virus for all sequences available are mapped as red histograms in a linear plot for ORF1 and a radial plot for S, M, E, and N. All mapped cross-reactive epitopes within ORF1 were present across SARS-CoV-2, HKU1, and OC43. Within the radial plot, the yellow track represents the SARS-CoV-2 sequence, dark blue HKU1 and light blue OC43, with red histograms representing the prevalence of the putative epitope across the viruses (b). Image Credit: Nature Communications

The significance of SARS-CoV-2 non-spike glycoprotein targets

While conducting the experiments, the researchers have observed a higher frequency of nucleocapsid-specific and cross-reactive IL-2-secreting memory T cells in contacts who have remained PCR-negative despite exposure compared with those who convert to PCR-positive.

The authors argue that antibodies against human coronaviruses can be viewed as a marker of prior exposure to these viruses, whereas the cross-reactive memory T cells mediate true protection; nonetheless, it is also possible that the antibodies bestow or mediate protection themselves.

On the other hand, there were no significant differences in the frequency of responses to SARS-CoV-2 spike glycoprotein, implying a somewhat limited protective function of spike-cross-reactive T cells, which is an important finding.

Notably, this underscores the importance of non-spike glycoprotein targets (especially nucleocapsid and ORF1) for T cell-mediated protection when there are no neutralizing antibodies, which is highly consistent with the wide array of antigen-specific T cells induced by SARS-CoV-2 infection and cross-reactive T cells in pre-pandemic cohorts.

“In light of this, the inclusion of these targets alongside the major antibody target of spike glycoprotein could be critical in maintaining the benefit of vaccination in the case of vaccine-strain mismatch, as could occur with the emergence of novel variants”, emphasize study authors in this Nature Communications paper.

Informing future development of vaccines

In short, this is basically the first study that aims to detect ex vivo IL-2 and interferon-gamma responses, which likely correlate with central memory T cell responses specific for cross-reactive epitopes in contacts of COVID-19 cases early after exposure. Moreover, the study suggests that the initial frequency of IL-2-secreting cross-reactive T cells can be linked to COVID-19 infection protection among contacts.

“Our study complements the small but growing body of evidence that T cells may protect against SARS-CoV-2 infection and supports the potential utility of second-generation vaccines targeting core proteins”, say study authors.

As the long-term utility of purely spike-based vaccine is uncertain in the era of emerging SARS-CoV-2 variants, these types of studies will be pivotal in further guiding research endeavors in the field, but also our public health response against the ongoing COVID-19 pandemic.

Total
0
Shares
Share 0
Tweet 0
Pin it 0
Share 0
Medical Finance

Medical Finance

Related Posts

Study: Pre-exposure prophylaxis with Evusheld™ elicits limited neutralizing activity against the omicron variant in kidney transplant patients. Image Credit: PHOTOCREO Michal Bednarek/Shutterstock

Evusheld™ found to poorly neutralize Omicron in kidney transplant patients

by Medical Finance
July 5, 2022
0

In a recent study posted to the medRxiv* preprint server, researchers evaluated the neutralizing antibody (nAb) titers and anti-receptor-binding domain...

Study: Topologically engineered antibodies and Fc-fusion proteins: a new class of multifunctional therapeutic candidates for SARS-CoV-2, cancer, and other disease. Image Credit: ustas7777777/Shutterstock

Topologically designed antibody candidates for SARS-CoV-2 and cancer therapies

by Medical Finance
July 5, 2022
0

A recent study posted to the bioRxiv* preprint server presented topologically engineered fragment crystallizable (Fc)-fusion proteins and antibodies as therapeutic options...

Study: Vitamin D Supplements for Prevention of Covid-19 or other Acute Respiratory Infections: a Phase 3 Randomized Controlled Trial (CORONAVIT). Image Credit: Alrandir/Shutterstock

Effectiveness of a ‘test-and-treat’ approach for identification and treatment of vitamin D insufficiency for prevention of COVID-19

by Medical Finance
July 5, 2022
0

In a recent study posted to the medRxiv* preprint server, researchers determined the impact of vitamin D status in preventing all-cause...

Study: Identification of SARS-CoV-2 in different human tissues. Validation of immunohistochemical and qPCR techniques in paraffin-embedded tissues and cytology. Image Credit: PHOTOCREO Michal Bednarek/Shutterstock

Scientists describe use of PCR in detecting SARS-CoV-2 in paraffine-embedded tissues

by Medical Finance
July 5, 2022
0

Scientists from Spain have recently compared the efficacy of the quantitative polymerase chain reaction (qPCR) method and immunohistochemistry in detecting...

Study: ACE2 is necessary for SARS-CoV-2 infection and sensing by macrophages but not sufficient for productive viral replication. Image Credit: PHOTOCREO Michal Bednarek/Shutterstock

Study explores macrophage susceptibility to SARS-CoV-2 virions

by Medical Finance
July 5, 2022
0

A recent study posted to the bioRxiv* preprint server investigated the susceptibility of macrophages to severe acute respiratory syndrome coronavirus...

Study: Methylene Blue Is a Nonspecific Protein-Protein Interaction Inhibitor with Potential for Repurposing as an Antiviral for COVID-19. Image Credit: Kateryna Kon/Shutterstock

Study finds methylene blue is a low-micromolar inhibitor of the the SARS-CoV-2 spike protein and ACE2 interaction

by Medical Finance
July 5, 2022
0

The rapid outbreak of severe acute respiratory syndrome‐coronavirus 2 (SARS‐CoV‐2), a novel coronavirus, caused the ongoing coronavirus disease 2019 (COVID-19). Among...

Next Post
Study: Comparison of Moderna Versus Pfizer-Biontech COVID-19 Vaccine Outcomes: A Target Trial Emulation Study In the U.S. Veterans Affairs Healthcare System. Image Credit: BaLL LunLa/Shutterstock

Comparing the Moderna and Pfizer-Biontech vaccines against SARS-CoV-2 infection

Uno single tube reader

High resolution single tube reader

0 0 votes
Article Rating
Subscribe
Login
Notify of
guest
guest
0 Comments
Inline Feedbacks
View all comments

Support

  • Contact
  • Disclaimer
  • Home
  • Privacy Policy
  • Terms And Conditions

Categories

  • Coronavirus
  • Insights From Industry
  • Interviews
  • Mediknowledge
  • News
  • Thought Leaders
  • Whitepapers

More News

  • Disability 620x480
    Why millions on Medicaid are at risk of losing coverage in the months ahead
  • ImageForNews 710960 16502071416329216
    Monoclonal antibodies from COVID-19 convalescent donors target conserved site
  • Home
  • Privacy Policy
  • Contact
  • Disclaimer
  • Terms And Conditions

© 2022 Medical Finance - Latest Financial and Business News

No Result
View All Result
  • Interviews
  • Mediknowledge
  • News
  • Insights From Industry
  • Coronavirus
  • Thought Leaders
  • Whitepapers
wpDiscuz
0
0
Would love your thoughts, please comment.x
()
x
| Reply